A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …
generated in great volume by both physical sensors and online processes (virtual sensors) …
[HTML][HTML] A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations
Deep learning has emerged as a powerful tool in various domains, revolutionising machine
learning research. However, one persistent challenge is the scarcity of labelled training …
learning research. However, one persistent challenge is the scarcity of labelled training …
Graphgpt: Graph instruction tuning for large language models
Graph Neural Networks (GNNs) have evolved to understand graph structures through
recursive exchanges and aggregations among nodes. To enhance robustness, self …
recursive exchanges and aggregations among nodes. To enhance robustness, self …
Improving graph collaborative filtering with neighborhood-enriched contrastive learning
Recently, graph collaborative filtering methods have been proposed as an effective
recommendation approach, which can capture users' preference over items by modeling the …
recommendation approach, which can capture users' preference over items by modeling the …
A Survey on Self-supervised Learning: Algorithms, Applications, and Future Trends
Deep supervised learning algorithms typically require a large volume of labeled data to
achieve satisfactory performance. However, the process of collecting and labeling such data …
achieve satisfactory performance. However, the process of collecting and labeling such data …
Self-supervised learning for recommender systems: A survey
In recent years, neural architecture-based recommender systems have achieved
tremendous success, but they still fall short of expectation when dealing with highly sparse …
tremendous success, but they still fall short of expectation when dealing with highly sparse …
Data augmentation for deep graph learning: A survey
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …
demonstrated remarkable performance on numerous graph learning tasks. To address the …
Federated learning from pre-trained models: A contrastive learning approach
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to
learn collaboratively without sharing their private data. However, excessive computation and …
learn collaboratively without sharing their private data. However, excessive computation and …
Pre-training molecular graph representation with 3d geometry
Molecular graph representation learning is a fundamental problem in modern drug and
material discovery. Molecular graphs are typically modeled by their 2D topological …
material discovery. Molecular graphs are typically modeled by their 2D topological …
Fedproto: Federated prototype learning across heterogeneous clients
Heterogeneity across clients in federated learning (FL) usually hinders the optimization
convergence and generalization performance when the aggregation of clients' knowledge …
convergence and generalization performance when the aggregation of clients' knowledge …