[HTML][HTML] A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges …

M Hakim, AAB Omran, AN Ahmed, M Al-Waily… - Ain Shams Engineering …, 2023 - Elsevier
Rolling bearing fault detection is critical for improving production efficiency and lowering
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …

Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review

D Neupane, J Seok - Ieee Access, 2020 - ieeexplore.ieee.org
A smart factory is a highly digitized and connected production facility that relies on smart
manufacturing. Additionally, artificial intelligence is the core technology of smart factories …

Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review

Z Yang, B Xu, W Luo, F Chen - Measurement, 2022 - Elsevier
With the increase of the scale and complexity of mechanical equipment, traditional intelligent
fault diagnosis (IFD) based on shallow machine learning methods is unable to meet the …

Data-driven methods for predictive maintenance of industrial equipment: A survey

W Zhang, D Yang, H Wang - IEEE systems journal, 2019 - ieeexplore.ieee.org
With the tremendous revival of artificial intelligence, predictive maintenance (PdM) based on
data-driven methods has become the most effective solution to address smart manufacturing …

Deep learning algorithms for bearing fault diagnostics—A comprehensive review

S Zhang, S Zhang, B Wang, TG Habetler - IEEE access, 2020 - ieeexplore.ieee.org
In this survey paper, we systematically summarize existing literature on bearing fault
diagnostics with deep learning (DL) algorithms. While conventional machine learning (ML) …

Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network

Y Cheng, M Lin, J Wu, H Zhu, X Shao - Knowledge-Based Systems, 2021 - Elsevier
This paper presents a data-driven intelligent fault diagnosis approach for rotating machinery
(RM) based on a novel continuous wavelet transform-local binary convolutional neural …

Review of tool condition monitoring in machining and opportunities for deep learning

G Serin, B Sener, AM Ozbayoglu, HO Unver - The International Journal of …, 2020 - Springer
Tool condition monitoring and machine tool diagnostics are performed using advanced
sensors and computational intelligence to predict and avoid adverse conditions for cutting …

A survey on deep learning based bearing fault diagnosis

DT Hoang, HJ Kang - Neurocomputing, 2019 - Elsevier
Abstract Nowadays, Deep Learning is the most attractive research trend in the area of
Machine Learning. With the ability of learning features from raw data by deep architectures …

Deep learning for smart manufacturing: Methods and applications

J Wang, Y Ma, L Zhang, RX Gao, D Wu - Journal of manufacturing systems, 2018 - Elsevier
Smart manufacturing refers to using advanced data analytics to complement physical
science for improving system performance and decision making. With the widespread …

Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus

R Rai, CK Sahu - IEEe Access, 2020 - ieeexplore.ieee.org
A multitude of cyber-physical system (CPS) applications, including design, control,
diagnosis, prognostics, and a host of other problems, are predicated on the assumption of …