Multimodal research in vision and language: A review of current and emerging trends

S Uppal, S Bhagat, D Hazarika, N Majumder, S Poria… - Information …, 2022 - Elsevier
Deep Learning and its applications have cascaded impactful research and development
with a diverse range of modalities present in the real-world data. More recently, this has …

Synthetic data in human analysis: A survey

I Joshi, M Grimmer, C Rathgeb, C Busch… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Deep neural networks have become prevalent in human analysis, boosting the performance
of applications, such as biometric recognition, action recognition, as well as person re …

A general survey on attention mechanisms in deep learning

G Brauwers, F Frasincar - IEEE Transactions on Knowledge …, 2021 - ieeexplore.ieee.org
Attention is an important mechanism that can be employed for a variety of deep learning
models across many different domains and tasks. This survey provides an overview of the …

Distribution matching for crowd counting

B Wang, H Liu, D Samaras… - Advances in neural …, 2020 - proceedings.neurips.cc
In crowd counting, each training image contains multiple people, where each person is
annotated by a dot. Existing crowd counting methods need to use a Gaussian to smooth …

Rethinking spatial invariance of convolutional networks for object counting

ZQ Cheng, Q Dai, H Li, J Song, X Wu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …

Attention scaling for crowd counting

X Jiang, L Zhang, M Xu, T Zhang, P Lv… - Proceedings of the …, 2020 - openaccess.thecvf.com
Abstract Convolutional Neural Network (CNN) based methods generally take crowd
counting as a regression task by outputting crowd densities. They learn the map** …

Jhu-crowd++: Large-scale crowd counting dataset and a benchmark method

VA Sindagi, R Yasarla, VM Patel - IEEE transactions on pattern …, 2020 - ieeexplore.ieee.org
We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++)
that contains “4,372” images with “1.51 million” annotations. In comparison to existing …

Cnn-based density estimation and crowd counting: A survey

G Gao, J Gao, Q Liu, Q Wang, Y Wang - arxiv preprint arxiv:2003.12783, 2020 - arxiv.org
Accurately estimating the number of objects in a single image is a challenging yet
meaningful task and has been applied in many applications such as urban planning and …

Spatial uncertainty-aware semi-supervised crowd counting

Y Meng, H Zhang, Y Zhao, X Yang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Semi-supervised approaches for crowd counting attract attention, as the fully supervised
paradigm is expensive and laborious due to its request for a large number of images of …

Multi-level bottom-top and top-bottom feature fusion for crowd counting

VA Sindagi, VM Patel - Proceedings of the IEEE/CVF …, 2019 - openaccess.thecvf.com
Crowd counting presents enormous challenges in the form of large variation in scales within
images and across the dataset. These issues are further exacerbated in highly congested …