Multimodal research in vision and language: A review of current and emerging trends
Deep Learning and its applications have cascaded impactful research and development
with a diverse range of modalities present in the real-world data. More recently, this has …
with a diverse range of modalities present in the real-world data. More recently, this has …
Synthetic data in human analysis: A survey
Deep neural networks have become prevalent in human analysis, boosting the performance
of applications, such as biometric recognition, action recognition, as well as person re …
of applications, such as biometric recognition, action recognition, as well as person re …
A general survey on attention mechanisms in deep learning
G Brauwers, F Frasincar - IEEE Transactions on Knowledge …, 2021 - ieeexplore.ieee.org
Attention is an important mechanism that can be employed for a variety of deep learning
models across many different domains and tasks. This survey provides an overview of the …
models across many different domains and tasks. This survey provides an overview of the …
Distribution matching for crowd counting
In crowd counting, each training image contains multiple people, where each person is
annotated by a dot. Existing crowd counting methods need to use a Gaussian to smooth …
annotated by a dot. Existing crowd counting methods need to use a Gaussian to smooth …
Rethinking spatial invariance of convolutional networks for object counting
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …
networks is the key to object counting. However, after verifying several mainstream counting …
Attention scaling for crowd counting
Abstract Convolutional Neural Network (CNN) based methods generally take crowd
counting as a regression task by outputting crowd densities. They learn the map** …
counting as a regression task by outputting crowd densities. They learn the map** …
Jhu-crowd++: Large-scale crowd counting dataset and a benchmark method
We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++)
that contains “4,372” images with “1.51 million” annotations. In comparison to existing …
that contains “4,372” images with “1.51 million” annotations. In comparison to existing …
Cnn-based density estimation and crowd counting: A survey
Accurately estimating the number of objects in a single image is a challenging yet
meaningful task and has been applied in many applications such as urban planning and …
meaningful task and has been applied in many applications such as urban planning and …
Spatial uncertainty-aware semi-supervised crowd counting
Semi-supervised approaches for crowd counting attract attention, as the fully supervised
paradigm is expensive and laborious due to its request for a large number of images of …
paradigm is expensive and laborious due to its request for a large number of images of …
Multi-level bottom-top and top-bottom feature fusion for crowd counting
Crowd counting presents enormous challenges in the form of large variation in scales within
images and across the dataset. These issues are further exacerbated in highly congested …
images and across the dataset. These issues are further exacerbated in highly congested …