From google gemini to openai q*(q-star): A survey of resha** the generative artificial intelligence (ai) research landscape

TR McIntosh, T Susnjak, T Liu, P Watters… - arxiv preprint arxiv …, 2023 - arxiv.org
This comprehensive survey explored the evolving landscape of generative Artificial
Intelligence (AI), with a specific focus on the transformative impacts of Mixture of Experts …

A review of modern recommender systems using generative models (gen-recsys)

Y Deldjoo, Z He, J McAuley, A Korikov… - Proceedings of the 30th …, 2024 - dl.acm.org
Traditional recommender systems typically use user-item rating histories as their main data
source. However, deep generative models now have the capability to model and sample …

Multimodal learning with transformers: A survey

P Xu, X Zhu, DA Clifton - IEEE Transactions on Pattern Analysis …, 2023 - ieeexplore.ieee.org
Transformer is a promising neural network learner, and has achieved great success in
various machine learning tasks. Thanks to the recent prevalence of multimodal applications …

A survey of multimodal hybrid deep learning for computer vision: Architectures, applications, trends, and challenges

K Bayoudh - Information Fusion, 2024 - Elsevier
In recent years, deep learning algorithms have rapidly revolutionized artificial intelligence,
particularly machine learning, enabling researchers and practitioners to extend previously …

Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research

S Gawde, S Patil, S Kumar, P Kamat, K Kotecha… - … Applications of Artificial …, 2023 - Elsevier
Industry 4.0 is an era of smart manufacturing. Manufacturing is impossible without the use of
machinery. The majority of these machines comprise rotating components and are called …

Dynamic vision-based machinery fault diagnosis with cross-modality feature alignment

X Li, S Yu, Y Lei, N Li, B Yang - IEEE/CAA Journal of …, 2024 - ieeexplore.ieee.org
Intelligent machinery fault diagnosis methods have been popularly and successfully
developed in the past decades, and the vibration acceleration data collected by contact …

Review of the Li-ion battery, thermal management, and AI-based battery management system for EV application

M Ghalkhani, S Habibi - Energies, 2022 - mdpi.com
With the large-scale commercialization and growing market share of electric vehicles (EVs),
many studies have been dedicated to battery systems design and development. Their focus …

A comprehensive investigation of multimodal deep learning fusion strategies for breast cancer classification

FZ Nakach, A Idri, E Goceri - Artificial Intelligence Review, 2024 - Springer
In breast cancer research, diverse data types and formats, such as radiological images,
clinical records, histological data, and expression analysis, are employed. Given the intricate …

Factorized contrastive learning: Going beyond multi-view redundancy

PP Liang, Z Deng, MQ Ma, JY Zou… - Advances in …, 2024 - proceedings.neurips.cc
In a wide range of multimodal tasks, contrastive learning has become a particularly
appealing approach since it can successfully learn representations from abundant …

Domain adaptation: challenges, methods, datasets, and applications

P Singhal, R Walambe, S Ramanna, K Kotecha - IEEE access, 2023 - ieeexplore.ieee.org
Deep Neural Networks (DNNs) trained on one dataset (source domain) do not perform well
on another set of data (target domain), which is different but has similar properties as the …