A review of recurrent neural networks: LSTM cells and network architectures

Y Yu, X Si, C Hu, J Zhang - Neural computation, 2019 - direct.mit.edu
Recurrent neural networks (RNNs) have been widely adopted in research areas concerned
with sequential data, such as text, audio, and video. However, RNNs consisting of sigma …

Machine learning in materials science

J Wei, X Chu, XY Sun, K Xu, HX Deng, J Chen, Z Wei… - InfoMat, 2019 - Wiley Online Library
Traditional methods of discovering new materials, such as the empirical trial and error
method and the density functional theory (DFT)‐based method, are unable to keep pace …

[HTML][HTML] Potential, challenges and future directions for deep learning in prognostics and health management applications

O Fink, Q Wang, M Svensen, P Dersin, WJ Lee… - … Applications of Artificial …, 2020 - Elsevier
Deep learning applications have been thriving over the last decade in many different
domains, including computer vision and natural language understanding. The drivers for the …

A review on deep learning in machining and tool monitoring: Methods, opportunities, and challenges

V Nasir, F Sassani - The International Journal of Advanced Manufacturing …, 2021 - Springer
Data-driven methods provided smart manufacturing with unprecedented opportunities to
facilitate the transition toward Industry 4.0–based production. Machine learning and deep …

Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks

X Li, Y Xu, N Li, B Yang, Y Lei - IEEE/CAA Journal of …, 2022 - ieeexplore.ieee.org
In recent years, intelligent data-driven prognostic methods have been successfully
developed, and good machinery health assessment performance has been achieved …

Remaining useful life estimation in prognostics using deep convolution neural networks

X Li, Q Ding, JQ Sun - Reliability Engineering & System Safety, 2018 - Elsevier
Traditionally, system prognostics and health management (PHM) depends on sufficient prior
knowledge of critical components degradation process in order to predict the remaining …

A review on the application of deep learning in system health management

S Khan, T Yairi - Mechanical Systems and Signal Processing, 2018 - Elsevier
Given the advancements in modern technological capabilities, having an integrated health
management and diagnostic strategy becomes an important part of a system's operational …

Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method

J Li, Y Liu, Q Li - Measurement, 2022 - Elsevier
Data-driven intelligent method has been widely used in fault diagnostics. However, it is
observed that previous research studies focusing on imbalanced datasets for fault diagnosis …

Deep learning and its applications to machine health monitoring

R Zhao, R Yan, Z Chen, K Mao, P Wang… - Mechanical Systems and …, 2019 - Elsevier
Abstract Since 2006, deep learning (DL) has become a rapidly growing research direction,
redefining state-of-the-art performances in a wide range of areas such as object recognition …

A novel deep learning method based on attention mechanism for bearing remaining useful life prediction

Y Chen, G Peng, Z Zhu, S Li - Applied Soft Computing, 2020 - Elsevier
Rolling bearing is a key component in rotation machine, whose remaining useful life (RUL)
prediction is an essential issue of constructing condition-based maintenance (CBM) system …