A survey on deep learning for human activity recognition

F Gu, MH Chung, M Chignell, S Valaee… - ACM Computing …, 2021 - dl.acm.org
Human activity recognition is a key to a lot of applications such as healthcare and smart
home. In this study, we provide a comprehensive survey on recent advances and challenges …

Financial time series forecasting with deep learning: A systematic literature review: 2005–2019

OB Sezer, MU Gudelek, AM Ozbayoglu - Applied soft computing, 2020 - Elsevier
Financial time series forecasting is undoubtedly the top choice of computational intelligence
for finance researchers in both academia and the finance industry due to its broad …

Robust speech recognition via large-scale weak supervision

A Radford, JW Kim, T Xu, G Brockman… - International …, 2023 - proceedings.mlr.press
We study the capabilities of speech processing systems trained simply to predict large
amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual …

Deep learning sensor fusion for autonomous vehicle perception and localization: A review

J Fayyad, MA Jaradat, D Gruyer, H Najjaran - Sensors, 2020 - mdpi.com
Autonomous vehicles (AV) are expected to improve, reshape, and revolutionize the future of
ground transportation. It is anticipated that ordinary vehicles will one day be replaced with …

A survey of deep learning and its applications: a new paradigm to machine learning

S Dargan, M Kumar, MR Ayyagari, G Kumar - Archives of Computational …, 2020 - Springer
Nowadays, deep learning is a current and a stimulating field of machine learning. Deep
learning is the most effective, supervised, time and cost efficient machine learning approach …

Speech recognition using deep neural networks: A systematic review

AB Nassif, I Shahin, I Attili, M Azzeh, K Shaalan - IEEE access, 2019 - ieeexplore.ieee.org
Over the past decades, a tremendous amount of research has been done on the use of
machine learning for speech processing applications, especially speech recognition …

Deep learning for audio signal processing

H Purwins, B Li, T Virtanen, J Schlüter… - IEEE Journal of …, 2019 - ieeexplore.ieee.org
Given the recent surge in developments of deep learning, this paper provides a review of the
state-of-the-art deep learning techniques for audio signal processing. Speech, music, and …

Speech emotion recognition using deep learning techniques: A review

RA Khalil, E Jones, MI Babar, T Jan, MH Zafar… - IEEE …, 2019 - ieeexplore.ieee.org
Emotion recognition from speech signals is an important but challenging component of
Human-Computer Interaction (HCI). In the literature of speech emotion recognition (SER) …

Deep learning in spiking neural networks

A Tavanaei, M Ghodrati, SR Kheradpisheh… - Neural networks, 2019 - Elsevier
In recent years, deep learning has revolutionized the field of machine learning, for computer
vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is …

A survey on deep learning for software engineering

Y Yang, X **a, D Lo, J Grundy - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
In 2006, Geoffrey Hinton proposed the concept of training “Deep Neural Networks (DNNs)”
and an improved model training method to break the bottleneck of neural network …