End-to-end transformer-based models in textual-based NLP

A Rahali, MA Akhloufi - AI, 2023 - mdpi.com
Transformer architectures are highly expressive because they use self-attention
mechanisms to encode long-range dependencies in the input sequences. In this paper, we …

Fedproto: Federated prototype learning across heterogeneous clients

Y Tan, G Long, L Liu, T Zhou, Q Lu, J Jiang… - Proceedings of the …, 2022 - ojs.aaai.org
Heterogeneity across clients in federated learning (FL) usually hinders the optimization
convergence and generalization performance when the aggregation of clients' knowledge …

Federated learning from pre-trained models: A contrastive learning approach

Y Tan, G Long, J Ma, L Liu, T Zhou… - Advances in neural …, 2022 - proceedings.neurips.cc
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to
learn collaboratively without sharing their private data. However, excessive computation and …

Self-supervised anomaly detection in computer vision and beyond: A survey and outlook

H Hojjati, TKK Ho, N Armanfard - Neural Networks, 2024 - Elsevier
Anomaly detection (AD) plays a crucial role in various domains, including cybersecurity,
finance, and healthcare, by identifying patterns or events that deviate from normal behavior …

Trustworthy graph neural networks: Aspects, methods and trends

H Zhang, B Wu, X Yuan, S Pan, H Tong… - arxiv preprint arxiv …, 2022 - arxiv.org
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications like …

Anemone: Graph anomaly detection with multi-scale contrastive learning

M **, Y Liu, Y Zheng, L Chi, YF Li, S Pan - Proceedings of the 30th ACM …, 2021 - dl.acm.org
Anomaly detection on graphs plays a significant role in various domains, including
cybersecurity, e-commerce, and financial fraud detection. However, existing methods on …

BTAD: A binary transformer deep neural network model for anomaly detection in multivariate time series data

M Ma, L Han, C Zhou - Advanced Engineering Informatics, 2023 - Elsevier
In the context of big data, if the task of multivariate time series data anomaly detection cannot
be performed efficiently and accurately, it will bring great security risks to industrial systems …

[HTML][HTML] Anomaly detection for space information networks: A survey of challenges, techniques, and future directions

A Diro, S Kaisar, AV Vasilakos, A Anwar, A Nasirian… - Computers & …, 2024 - Elsevier
Abstract Space anomaly detection plays a critical role in safeguarding the integrity and
reliability of space systems amid the rising tide of threats. This survey aims to deepen …

Graph transformers: A survey

A Shehzad, F **a, S Abid, C Peng, S Yu… - arxiv preprint arxiv …, 2024 - arxiv.org
Graph transformers are a recent advancement in machine learning, offering a new class of
neural network models for graph-structured data. The synergy between transformers and …

Label information enhanced fraud detection against low homophily in graphs

Y Wang, J Zhang, Z Huang, W Li, S Feng, Z Ma… - Proceedings of the …, 2023 - dl.acm.org
Node classification is a substantial problem in graph-based fraud detection. Many existing
works adopt Graph Neural Networks (GNNs) to enhance fraud detectors. While promising …