Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Domain adaptation: challenges, methods, datasets, and applications
Deep Neural Networks (DNNs) trained on one dataset (source domain) do not perform well
on another set of data (target domain), which is different but has similar properties as the …
on another set of data (target domain), which is different but has similar properties as the …
Transfer adaptation learning: A decade survey
The world we see is ever-changing and it always changes with people, things, and the
environment. Domain is referred to as the state of the world at a certain moment. A research …
environment. Domain is referred to as the state of the world at a certain moment. A research …
Continual test-time domain adaptation
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …
without using any source data. Existing works mainly consider the case where the target …
Exact feature distribution matching for arbitrary style transfer and domain generalization
Arbitrary style transfer (AST) and domain generalization (DG) are important yet challenging
visual learning tasks, which can be cast as a feature distribution matching problem. With the …
visual learning tasks, which can be cast as a feature distribution matching problem. With the …
A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets
K Bayoudh, R Knani, F Hamdaoui, A Mtibaa - The Visual Computer, 2022 - Springer
The research progress in multimodal learning has grown rapidly over the last decade in
several areas, especially in computer vision. The growing potential of multimodal data …
several areas, especially in computer vision. The growing potential of multimodal data …
Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation
Self-training is a competitive approach in domain adaptive segmentation, which trains the
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
Perpetual humanoid control for real-time simulated avatars
We present a physics-based humanoid controller that achieves high-fidelity motion imitation
and fault-tolerant behavior in the presence of noisy input (eg pose estimates from video or …
and fault-tolerant behavior in the presence of noisy input (eg pose estimates from video or …
Confidence regularized self-training
Recent advances in domain adaptation show that deep self-training presents a powerful
means for unsupervised domain adaptation. These methods often involve an iterative …
means for unsupervised domain adaptation. These methods often involve an iterative …
Instance adaptive self-training for unsupervised domain adaptation
The divergence between labeled training data and unlabeled testing data is a significant
challenge for recent deep learning models. Unsupervised domain adaptation (UDA) …
challenge for recent deep learning models. Unsupervised domain adaptation (UDA) …
Cycle self-training for domain adaptation
Mainstream approaches for unsupervised domain adaptation (UDA) learn domain-invariant
representations to narrow the domain shift, which are empirically effective but theoretically …
representations to narrow the domain shift, which are empirically effective but theoretically …