Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

Atomistic line graph neural network for improved materials property predictions

K Choudhary, B DeCost - npj Computational Materials, 2021 - nature.com
Graph neural networks (GNN) have been shown to provide substantial performance
improvements for atomistic material representation and modeling compared with descriptor …

Periodic graph transformers for crystal material property prediction

K Yan, Y Liu, Y Lin, S Ji - Advances in Neural Information …, 2022 - proceedings.neurips.cc
We consider representation learning on periodic graphs encoding crystal materials. Different
from regular graphs, periodic graphs consist of a minimum unit cell repeating itself on a …

Opportunities and challenges for machine learning in materials science

D Morgan, R Jacobs - Annual Review of Materials Research, 2020 - annualreviews.org
Advances in machine learning have impacted myriad areas of materials science, such as
the discovery of novel materials and the improvement of molecular simulations, with likely …

[HTML][HTML] DScribe: Library of descriptors for machine learning in materials science

L Himanen, MOJ Jäger, EV Morooka, FF Canova… - Computer Physics …, 2020 - Elsevier
DScribe is a software package for machine learning that provides popular feature
transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the …

A critical review of machine learning of energy materials

C Chen, Y Zuo, W Ye, X Li, Z Deng… - Advanced Energy …, 2020 - Wiley Online Library
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …

Graph networks as a universal machine learning framework for molecules and crystals

C Chen, W Ye, Y Zuo, C Zheng, SP Ong - Chemistry of Materials, 2019 - ACS Publications
Graph networks are a new machine learning (ML) paradigm that supports both relational
reasoning and combinatorial generalization. Here, we develop universal MatErials Graph …

From DFT to machine learning: recent approaches to materials science–a review

GR Schleder, ACM Padilha, CM Acosta… - Journal of Physics …, 2019 - iopscience.iop.org
Recent advances in experimental and computational methods are increasing the quantity
and complexity of generated data. This massive amount of raw data needs to be stored and …

The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design

K Choudhary, KF Garrity, ACE Reid, B DeCost… - npj computational …, 2020 - nature.com
Abstract The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an
integrated infrastructure to accelerate materials discovery and design using density …