Understanding retrieval robustness for retrieval-augmented image captioning

W Li, J Li, R Ramos, R Tang, D Elliott - arxiv preprint arxiv:2406.02265, 2024 - arxiv.org
Recent advances in retrieval-augmented models for image captioning highlight the benefit
of retrieving related captions for efficient, lightweight models with strong domain-transfer …

Rethinking translation memory augmented neural machine translation

H Hao, G Huang, L Liu, Z Zhang, S Shi… - arxiv preprint arxiv …, 2023 - arxiv.org
This paper rethinks translation memory augmented neural machine translation (TM-
augmented NMT) from two perspectives, ie, a probabilistic view of retrieval and the variance …

Survey on Memory-Augmented neural networks: Cognitive insights to AI applications

S Khosla, Z Zhu, Y He - arxiv preprint arxiv:2312.06141, 2023 - arxiv.org
This paper explores Memory-Augmented Neural Networks (MANNs), delving into how they
blend human-like memory processes into AI. It covers different memory types, like sensory …

Towards example-based NMT with multi-Levenshtein transformers

M Bouthors, J Crego, F Yvon - arxiv preprint arxiv:2310.08967, 2023 - arxiv.org
Retrieval-Augmented Machine Translation (RAMT) is attracting growing attention. This is
because RAMT not only improves translation metrics, but is also assumed to implement …

Retrieval-Augmented Machine Translation with Unstructured Knowledge

J Wang, F Meng, Y Zhang, J Zhou - arxiv preprint arxiv:2412.04342, 2024 - arxiv.org
Retrieval-augmented generation (RAG) introduces additional information to enhance large
language models (LLMs). In machine translation (MT), previous work typically retrieves in …

Optimizing example selection for retrieval-augmented machine translation with translation memories

M Bouthors, J Crego, F Yvon - arxiv preprint arxiv:2405.15070, 2024 - arxiv.org
Retrieval-augmented machine translation leverages examples from a translation memory by
retrieving similar instances. These examples are used to condition the predictions of a …

Prompting Large Language Models with Human Error Markings for Self-Correcting Machine Translation

N Berger, S Riezler, M Exel, M Huck - arxiv preprint arxiv:2406.02267, 2024 - arxiv.org
While large language models (LLMs) pre-trained on massive amounts of unpaired language
data have reached the state-of-the-art in machine translation (MT) of general domain texts …

[BOG][B] Designing accurate retrieval systems using language models

DS Sachan - 2024 - search.proquest.com
The success of pre-trained language models (PLMs) in language understanding tasks has
attracted attention to these models being applied as building blocks in information retrieval …

Optimiser le choix des exemples pour la traduction automatique augmentée par des mémoires de traduction

M Bouthors, J Crego, F Yvon - Actes de JEP-TALN-RECITAL 2024 …, 2024 - inria.hal.science
La traduction neuronale à partir d'exemples s' appuie sur l'exploitation d'une mémoire de
traduction contenant des exemples similaires aux phrases à traduire. Ces exemples sont …