[HTML][HTML] Multi-modality approaches for medical support systems: A systematic review of the last decade

M Salvi, HW Loh, S Seoni, PD Barua, S García… - Information …, 2024 - Elsevier
Healthcare traditionally relies on single-modality approaches, which limit the information
available for medical decisions. However, advancements in technology and the availability …

Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation

YD Zhang, Z Dong, SH Wang, X Yu, X Yao, Q Zhou… - Information …, 2020 - Elsevier
Multimodal fusion in neuroimaging combines data from multiple imaging modalities to
overcome the fundamental limitations of individual modalities. Neuroimaging fusion can …

A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease

S El-Sappagh, JM Alonso, SMR Islam, AM Sultan… - Scientific reports, 2021 - nature.com
Alzheimer's disease (AD) is the most common type of dementia. Its diagnosis and
progression detection have been intensively studied. Nevertheless, research studies often …

Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer's disease dementia: a systematic review

S Grueso, R Viejo-Sobera - Alzheimer's research & therapy, 2021 - Springer
Background An increase in lifespan in our society is a double-edged sword that entails a
growing number of patients with neurocognitive disorders, Alzheimer's disease being the …

Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis

V Cheplygina, M De Bruijne, JPW Pluim - Medical image analysis, 2019 - Elsevier
Abstract Machine learning (ML) algorithms have made a tremendous impact in the field of
medical imaging. While medical imaging datasets have been growing in size, a challenge …

Predicting Alzheimer's disease progression using multi-modal deep learning approach

G Lee, K Nho, B Kang, KA Sohn, D Kim - Scientific reports, 2019 - nature.com
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by a decline
in cognitive functions with no validated disease modifying treatment. It is critical for timely …

Dual attention multi-instance deep learning for Alzheimer's disease diagnosis with structural MRI

W Zhu, L Sun, J Huang, L Han… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Structural magnetic resonance imaging (sMRI) is widely used for the brain neurological
disease diagnosis, which could reflect the variations of brain. However, due to the local …

Brain MRI analysis for Alzheimer's disease diagnosis using an ensemble system of deep convolutional neural networks

J Islam, Y Zhang - Brain informatics, 2018 - Springer
Alzheimer's disease is an incurable, progressive neurological brain disorder. Earlier
detection of Alzheimer's disease can help with proper treatment and prevent brain tissue …

Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises

J Sui, R Jiang, J Bustillo, V Calhoun - Biological psychiatry, 2020 - Elsevier
The neuroimaging community has witnessed a paradigm shift in biomarker discovery from
using traditional univariate brain map** approaches to multivariate predictive models …

A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages

S Rathore, M Habes, MA Iftikhar, A Shacklett… - NeuroImage, 2017 - Elsevier
Neuroimaging has made it possible to measure pathological brain changes associated with
Alzheimer's disease (AD) in vivo. Over the past decade, these measures have been …