Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review

S Cheng, C Quilodrán-Casas, S Ouala… - IEEE/CAA Journal of …, 2023 - ieeexplore.ieee.org
Data assimilation (DA) and uncertainty quantification (UQ) are extensively used in analysing
and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical …

Toward causal representation learning

B Schölkopf, F Locatello, S Bauer, NR Ke… - Proceedings of the …, 2021 - ieeexplore.ieee.org
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …

Neural ordinary differential equations

RTQ Chen, Y Rubanova… - Advances in neural …, 2018 - proceedings.neurips.cc
We introduce a new family of deep neural network models. Instead of specifying a discrete
sequence of hidden layers, we parameterize the derivative of the hidden state using a …

[HTML][HTML] Machine learning for polymer composites process simulation–a review

S Cassola, M Duhovic, T Schmidt, D May - Composites Part B: Engineering, 2022 - Elsevier
Over the last 20 years Machine Learning (ML) has been applied to a wide variety of
applications in the fields of engineering and computer science. In the field of material …

Learning mesh-based simulation with graph networks

T Pfaff, M Fortunato, A Sanchez-Gonzalez… - arxiv preprint arxiv …, 2020 - arxiv.org
Mesh-based simulations are central to modeling complex physical systems in many
disciplines across science and engineering. Mesh representations support powerful …

Digital twin: Values, challenges and enablers from a modeling perspective

A Rasheed, O San, T Kvamsdal - IEEE access, 2020 - ieeexplore.ieee.org
Digital twin can be defined as a virtual representation of a physical asset enabled through
data and simulators for real-time prediction, optimization, monitoring, controlling, and …

Learning to simulate complex physics with graph networks

A Sanchez-Gonzalez, J Godwin… - International …, 2020 - proceedings.mlr.press
Here we present a machine learning framework and model implementation that can learn to
simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and …

PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network

Z Long, Y Lu, B Dong - Journal of Computational Physics, 2019 - Elsevier
Partial differential equations (PDEs) are commonly derived based on empirical
observations. However, recent advances of technology enable us to collect and store …

Learning to optimize: A primer and a benchmark

T Chen, X Chen, W Chen, H Heaton, J Liu… - Journal of Machine …, 2022 - jmlr.org
Learning to optimize (L2O) is an emerging approach that leverages machine learning to
develop optimization methods, aiming at reducing the laborious iterations of hand …

Towards physics-informed deep learning for turbulent flow prediction

R Wang, K Kashinath, M Mustafa, A Albert… - Proceedings of the 26th …, 2020 - dl.acm.org
While deep learning has shown tremendous success in a wide range of domains, it remains
a grand challenge to incorporate physical principles in a systematic manner to the design …