[HTML][HTML] Deep learning based synthesis of MRI, CT and PET: Review and analysis
Medical image synthesis represents a critical area of research in clinical decision-making,
aiming to overcome the challenges associated with acquiring multiple image modalities for …
aiming to overcome the challenges associated with acquiring multiple image modalities for …
Deep learning approaches for data augmentation in medical imaging: a review
A Kebaili, J Lapuyade-Lahorgue, S Ruan - Journal of Imaging, 2023 - mdpi.com
Deep learning has become a popular tool for medical image analysis, but the limited
availability of training data remains a major challenge, particularly in the medical field where …
availability of training data remains a major challenge, particularly in the medical field where …
Unsupervised medical image translation with adversarial diffusion models
Imputation of missing images via source-to-target modality translation can improve diversity
in medical imaging protocols. A pervasive approach for synthesizing target images involves …
in medical imaging protocols. A pervasive approach for synthesizing target images involves …
Synthetic data in machine learning for medicine and healthcare
Synthetic data in machine learning for medicine and healthcare | Nature Biomedical Engineering
Skip to main content Thank you for visiting nature.com. You are using a browser version with …
Skip to main content Thank you for visiting nature.com. You are using a browser version with …
ResViT: residual vision transformers for multimodal medical image synthesis
Generative adversarial models with convolutional neural network (CNN) backbones have
recently been established as state-of-the-art in numerous medical image synthesis tasks …
recently been established as state-of-the-art in numerous medical image synthesis tasks …
Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey
Brain tumor is one of the most dangerous cancers in people of all ages, and its grade
recognition is a challenging problem for radiologists in health monitoring and automated …
recognition is a challenging problem for radiologists in health monitoring and automated …
A review on medical imaging synthesis using deep learning and its clinical applications
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …
clinical application. Specifically, we summarized the recent developments of deep learning …
SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry
Every year, millions of brain magnetic resonance imaging (MRI) scans are acquired in
hospitals across the world. These have the potential to revolutionize our understanding of …
hospitals across the world. These have the potential to revolutionize our understanding of …
Medical image analysis based on deep learning approach
Medical imaging plays a significant role in different clinical applications such as medical
procedures used for early detection, monitoring, diagnosis, and treatment evaluation of …
procedures used for early detection, monitoring, diagnosis, and treatment evaluation of …
[書籍][B] Synthetic data for deep learning
SI Nikolenko - 2021 - Springer
You are holding in your hands… oh, come on, who holds books like this in their hands
anymore? Anyway, you are reading this, and it means that I have managed to release one of …
anymore? Anyway, you are reading this, and it means that I have managed to release one of …