Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Scientific discovery in the age of artificial intelligence
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, hel** scientists to generate hypotheses, design experiments …
and accelerate research, hel** scientists to generate hypotheses, design experiments …
Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR
Quantitative structure–activity relationship (QSAR) modelling, an approach that was
introduced 60 years ago, is widely used in computer-aided drug design. In recent years …
introduced 60 years ago, is widely used in computer-aided drug design. In recent years …
[HTML][HTML] DeePMD-kit v2: A software package for deep potential models
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics
simulations using machine learning potentials known as Deep Potential (DP) models. This …
simulations using machine learning potentials known as Deep Potential (DP) models. This …
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments
Molecular dynamics (MD) simulations allow insights into complex processes, but accurate
MD simulations require costly quantum-mechanical calculations. For larger systems, efficient …
MD simulations require costly quantum-mechanical calculations. For larger systems, efficient …
Machine learning for electrocatalyst and photocatalyst design and discovery
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …
reducing the impact of global warming, and providing solutions to environmental pollution …
Bridging the complexity gap in computational heterogeneous catalysis with machine learning
Heterogeneous catalysis underpins a wide variety of industrial processes including energy
conversion, chemical manufacturing and environmental remediation. Significant advances …
conversion, chemical manufacturing and environmental remediation. Significant advances …
Learning local equivariant representations for large-scale atomistic dynamics
A simultaneously accurate and computationally efficient parametrization of the potential
energy surface of molecules and materials is a long-standing goal in the natural sciences …
energy surface of molecules and materials is a long-standing goal in the natural sciences …
Electrocatalysis in alkaline media and alkaline membrane-based energy technologies
Hydrogen energy-based electrochemical energy conversion technologies offer the promise
of enabling a transition of the global energy landscape from fossil fuels to renewable energy …
of enabling a transition of the global energy landscape from fossil fuels to renewable energy …
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
OpenMM 8: molecular dynamics simulation with machine learning potentials
Machine learning plays an important and growing role in molecular simulation. The newest
version of the OpenMM molecular dynamics toolkit introduces new features to support the …
version of the OpenMM molecular dynamics toolkit introduces new features to support the …