[HTML][HTML] A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas
YOLO has become a central real-time object detection system for robotics, driverless cars,
and video monitoring applications. We present a comprehensive analysis of YOLO's …
and video monitoring applications. We present a comprehensive analysis of YOLO's …
[HTML][HTML] Deep learning in computer vision: A critical review of emerging techniques and application scenarios
Deep learning has been overwhelmingly successful in computer vision (CV), natural
language processing, and video/speech recognition. In this paper, our focus is on CV. We …
language processing, and video/speech recognition. In this paper, our focus is on CV. We …
Yolov9: Learning what you want to learn using programmable gradient information
Today's deep learning methods focus on how to design the objective functions to make the
prediction as close as possible to the target. Meanwhile, an appropriate neural network …
prediction as close as possible to the target. Meanwhile, an appropriate neural network …
Diffusiondet: Diffusion model for object detection
We propose DiffusionDet, a new framework that formulates object detection as a denoising
diffusion process from noisy boxes to object boxes. During the training stage, object boxes …
diffusion process from noisy boxes to object boxes. During the training stage, object boxes …
YOLOv6: A single-stage object detection framework for industrial applications
For years, the YOLO series has been the de facto industry-level standard for efficient object
detection. The YOLO community has prospered overwhelmingly to enrich its use in a …
detection. The YOLO community has prospered overwhelmingly to enrich its use in a …
Universal instance perception as object discovery and retrieval
All instance perception tasks aim at finding certain objects specified by some queries such
as category names, language expressions, and target annotations, but this complete field …
as category names, language expressions, and target annotations, but this complete field …
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Real-time object detection is one of the most important research topics in computer vision.
As new approaches regarding architecture optimization and training optimization are …
As new approaches regarding architecture optimization and training optimization are …
Wise-IoU: bounding box regression loss with dynamic focusing mechanism
Z Tong, Y Chen, Z Xu, R Yu - arxiv preprint arxiv:2301.10051, 2023 - arxiv.org
The loss function for bounding box regression (BBR) is essential to object detection. Its good
definition will bring significant performance improvement to the model. Most existing works …
definition will bring significant performance improvement to the model. Most existing works …
Detrs with collaborative hybrid assignments training
In this paper, we provide the observation that too few queries assigned as positive samples
in DETR with one-to-one set matching leads to sparse supervision on the encoder's output …
in DETR with one-to-one set matching leads to sparse supervision on the encoder's output …
Bevformer v2: Adapting modern image backbones to bird's-eye-view recognition via perspective supervision
We present a novel bird's-eye-view (BEV) detector with perspective supervision, which
converges faster and better suits modern image backbones. Existing state-of-the-art BEV …
converges faster and better suits modern image backbones. Existing state-of-the-art BEV …