Artificial intelligence in the creative industries: a review
This paper reviews the current state of the art in artificial intelligence (AI) technologies and
applications in the context of the creative industries. A brief background of AI, and …
applications in the context of the creative industries. A brief background of AI, and …
NTIRE 2021 challenge on image deblurring
Motion blur is a common photography artifact in dynamic environments that typically comes
jointly with the other types of degradation. This paper reviews the NTIRE 2021 Challenge on …
jointly with the other types of degradation. This paper reviews the NTIRE 2021 Challenge on …
Efficient and explicit modelling of image hierarchies for image restoration
The aim of this paper is to propose a mechanism to efficiently and explicitly model image
hierarchies in the global, regional, and local range for image restoration. To achieve that, we …
hierarchies in the global, regional, and local range for image restoration. To achieve that, we …
Diffir: Efficient diffusion model for image restoration
Diffusion model (DM) has achieved SOTA performance by modeling the image synthesis
process into a sequential application of a denoising network. However, different from image …
process into a sequential application of a denoising network. However, different from image …
Maxim: Multi-axis mlp for image processing
Recent progress on Transformers and multi-layer perceptron (MLP) models provide new
network architectural designs for computer vision tasks. Although these models proved to be …
network architectural designs for computer vision tasks. Although these models proved to be …
Restormer: Efficient transformer for high-resolution image restoration
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …
priors from large-scale data, these models have been extensively applied to image …
Rethinking coarse-to-fine approach in single image deblurring
Coarse-to-fine strategies have been extensively used for the architecture design of single
image deblurring networks. Conventional methods typically stack sub-networks with multi …
image deblurring networks. Conventional methods typically stack sub-networks with multi …
Deep generalized unfolding networks for image restoration
Deep neural networks (DNN) have achieved great success in image restoration. However,
most DNN methods are designed as a black box, lacking transparency and interpretability …
most DNN methods are designed as a black box, lacking transparency and interpretability …
All-in-one image restoration for unknown corruption
In this paper, we study a challenging problem in image restoration, namely, how to develop
an all-in-one method that could recover images from a variety of unknown corruption types …
an all-in-one method that could recover images from a variety of unknown corruption types …
Hinet: Half instance normalization network for image restoration
In this paper, we explore the role of Instance Normalization in low-level vision tasks.
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …