Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Learning Bayesian networks: approaches and issues
Bayesian networks have become a widely used method in the modelling of uncertain
knowledge. Owing to the difficulty domain experts have in specifying them, techniques that …
knowledge. Owing to the difficulty domain experts have in specifying them, techniques that …
Leak prediction model for water distribution networks created using a Bayesian network learning approach
SS Leu, QN Bui - Water resources management, 2016 - Springer
Water leakage in water distribution systems (WDSs) can bring various negative economic,
environmental, and safety effects. Therefore, predicting water leakage is one of the most …
environmental, and safety effects. Therefore, predicting water leakage is one of the most …
Dealing with irregular data in soft sensors: Bayesian method and comparative study
S Khatibisepehr, B Huang - Industrial & Engineering Chemistry …, 2008 - ACS Publications
The main challenge in develo** soft sensors in process industry is the existence of
irregularity of data, such as measurement noises, outliers, and missing data. This paper is …
irregularity of data, such as measurement noises, outliers, and missing data. This paper is …
A review of modeling techniques for genetic regulatory networks
H Yaghoobi, S Haghipour, H Hamzeiy… - Journal of Medical …, 2012 - journals.lww.com
Understanding the genetic regulatory networks, the discovery of interactions between genes
and understanding regulatory processes in a cell at the gene level are the major goals of …
and understanding regulatory processes in a cell at the gene level are the major goals of …
Learning Bayesian networks with incomplete data by augmentation
T Adel, C de Campos - Proceedings of the AAAI Conference on Artificial …, 2017 - ojs.aaai.org
We present new algorithms for learning Bayesian networks from data with missing values
using a data augmentation approach. An exact Bayesian network learning algorithm is …
using a data augmentation approach. An exact Bayesian network learning algorithm is …
[PDF][PDF] De l'identification de structure de réseaux bayésiens à la reconnaissance de formes à partir d'informations complètes ou incomplètes.
O François - 2006 - theses.hal.science
Durant ces travaux de thèse, une comparaison empirique de différentes techniques
d'apprentissage de structure de réseaux bayésiens a été effectuée, car même s' il peut en …
d'apprentissage de structure de réseaux bayésiens a été effectuée, car même s' il peut en …
[PDF][PDF] Exploring factors that affect performance on introductory programming courses
K Longi - Unpublished master's thesis). Department of Computer …, 2016 - helda.helsinki.fi
Researchers have long attempted to identify factors that could explain why learning to
program is easier for some than the others. That is, the goal has been to determine what …
program is easier for some than the others. That is, the goal has been to determine what …
Modélisation probabiliste du style d'apprentissage et application à l'adaptation de contenus pédagogiques indexés par une ontologie
C Piombo - 2007 - hal.science
Cette thèse s' inscrit dans le cadre général des systèmes d'enseignement adaptatifs. La
problématique traitée est l'adaptation de l'activité pédagogique au mode d'apprentissage …
problématique traitée est l'adaptation de l'activité pédagogique au mode d'apprentissage …
A global structural EM algorithm for a model of cancer progression
Cancer has complex patterns of progression that include converging as well as diverging
progressional pathways. Vogelstein's path model of colon cancer was a pioneering …
progressional pathways. Vogelstein's path model of colon cancer was a pioneering …
Learning Bayesian network equivalence classes from incomplete data
This paper proposes a new method, named Greedy Equivalence Search-Expectation
Maximization (GES-EM), for learning Bayesian networks from incomplete data. Our method …
Maximization (GES-EM), for learning Bayesian networks from incomplete data. Our method …