Application of entropies for automated diagnosis of epilepsy using EEG signals: A review

UR Acharya, H Fujita, VK Sudarshan, S Bhat… - Knowledge-based …, 2015‏ - Elsevier
Epilepsy is the neurological disorder of the brain which is difficult to diagnose visually using
Electroencephalogram (EEG) signals. Hence, an automated detection of epilepsy using …

Seizure prediction: the long and winding road

F Mormann, RG Andrzejak, CE Elger, K Lehnertz - Brain, 2007‏ - academic.oup.com
The sudden and apparently unpredictable nature of seizures is one of the most disabling
aspects of the disease epilepsy. A method capable of predicting the occurrence of seizures …

Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network

Y Zhang, Y Guo, P Yang, W Chen… - IEEE journal of …, 2019‏ - ieeexplore.ieee.org
Epilepsy seizure prediction paves the way of timely warning for patients to take more active
and effective intervention measures. Compared to seizure detection that only identifies the …

Focal onset seizure prediction using convolutional networks

H Khan, L Marcuse, M Fields… - IEEE Transactions on …, 2017‏ - ieeexplore.ieee.org
Objective: This paper investigates the hypothesis that focal seizures can be predicted using
scalp electroencephalogram (EEG) data. Our first aim is to learn features that distinguish …

Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system

Y Jiang, D Wu, Z Deng, P Qian, J Wang… - … on Neural Systems …, 2017‏ - ieeexplore.ieee.org
Recognition of epileptic seizures from offline EEG signals is very important in clinical
diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine …

Classification of seizure and nonseizure EEG signals using empirical mode decomposition

V Bajaj, RB Pachori - IEEE Transactions on Information …, 2011‏ - ieeexplore.ieee.org
In this paper, we present a new method for classification of electroencephalogram (EEG)
signals using empirical mode decomposition (EMD) method. The intrinsic mode functions …

Exploring the applicability of transfer learning and feature engineering in epilepsy prediction using hybrid transformer model

S Hu, J Liu, R Yang, YN Wang, A Wang… - … on Neural Systems …, 2023‏ - ieeexplore.ieee.org
Objective: Epilepsy prediction algorithms offer patients with drug-resistant epilepsy a way to
reduce unintended harm from sudden seizures. The purpose of this study is to investigate …

Epileptic seizure prediction using relative spectral power features

M Bandarabadi, CA Teixeira, J Rasekhi… - Clinical …, 2015‏ - Elsevier
Objective Prediction of epileptic seizures can improve the living conditions for refractory
epilepsy patients. We aimed to improve sensitivity and specificity of prediction methods, and …