Machine learning for a sustainable energy future

Z Yao, Y Lum, A Johnston, LM Mejia-Mendoza… - Nature Reviews …, 2023 - nature.com
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …

Explainable machine learning in materials science

X Zhong, B Gallagher, S Liu, B Kailkhura… - npj computational …, 2022 - nature.com
Abstract Machine learning models are increasingly used in materials studies because of
their exceptional accuracy. However, the most accurate machine learning models are …

[HTML][HTML] The shape–morphing performance of magnetoactive soft materials

AK Bastola, M Hossain - Materials & Design, 2021 - Elsevier
Magnetoactive soft materials (MSMs) are soft polymeric composites filled with magnetic
particles that are an emerging class of smart and multifunctional materials with immense …

Artificial intelligence in physical sciences: Symbolic regression trends and perspectives

D Angelis, F Sofos, TE Karakasidis - Archives of Computational Methods …, 2023 - Springer
Symbolic regression (SR) is a machine learning-based regression method based on genetic
programming principles that integrates techniques and processes from heterogeneous …

Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data

V Gupta, K Choudhary, F Tavazza, C Campbell… - Nature …, 2021 - nature.com
Artificial intelligence (AI) and machine learning (ML) have been increasingly used in
materials science to build predictive models and accelerate discovery. For selected …

In pursuit of the exceptional: Research directions for machine learning in chemical and materials science

J Schrier, AJ Norquist, T Buonassisi… - Journal of the American …, 2023 - ACS Publications
Exceptional molecules and materials with one or more extraordinary properties are both
technologically valuable and fundamentally interesting, because they often involve new …

Emerging trends in machine learning: a polymer perspective

TB Martin, DJ Audus - ACS Polymers Au, 2023 - ACS Publications
In the last five years, there has been tremendous growth in machine learning and artificial
intelligence as applied to polymer science. Here, we highlight the unique challenges …

Artificial intelligence to bring nanomedicine to life

N Serov, V Vinogradov - Advanced Drug Delivery Reviews, 2022 - Elsevier
The technology of drug delivery systems (DDSs) has demonstrated an outstanding
performance and effectiveness in production of pharmaceuticals, as it is proved by many …

[HTML][HTML] Scope of machine learning in materials research—A review

MH Mobarak, MA Mimona, MA Islam, N Hossain… - Applied Surface Science …, 2023 - Elsevier
This comprehensive review investigates the multifaceted applications of machine learning in
materials research across six key dimensions, redefining the field's boundaries. It explains …

Artificial intelligence and advanced materials

C López - Advanced Materials, 2023 - Wiley Online Library
Artificial intelligence (AI) is gaining strength, and materials science can both contribute to
and profit from it. In a simultaneous progress race, new materials, systems, and processes …