A survey on federated learning systems: Vision, hype and reality for data privacy and protection

Q Li, Z Wen, Z Wu, S Hu, N Wang, Y Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
As data privacy increasingly becomes a critical societal concern, federated learning has
been a hot research topic in enabling the collaborative training of machine learning models …

Federated learning in smart cities: Privacy and security survey

R Al-Huthaifi, T Li, W Huang, J Gu, C Li - Information Sciences, 2023 - Elsevier
Over the last decade, smart cities (SC) have been developed worldwide. Implementing big
data and the internet of things improves the monitoring and integration of different …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

A survey on security and privacy of federated learning

V Mothukuri, RM Parizi, S Pouriyeh, Y Huang… - Future Generation …, 2021 - Elsevier
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …

Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges

N Rodríguez-Barroso, D Jiménez-López, MV Luzón… - Information …, 2023 - Elsevier
Federated learning is a machine learning paradigm that emerges as a solution to the privacy-
preservation demands in artificial intelligence. As machine learning, federated learning is …

The distributed discrete gaussian mechanism for federated learning with secure aggregation

P Kairouz, Z Liu, T Steinke - International Conference on …, 2021 - proceedings.mlr.press
We consider training models on private data that are distributed across user devices. To
ensure privacy, we add on-device noise and use secure aggregation so that only the noisy …

Byzantine-resilient secure federated learning

J So, B Güler, AS Avestimehr - IEEE Journal on Selected Areas …, 2020 - ieeexplore.ieee.org
Secure federated learning is a privacy-preserving framework to improve machine learning
models by training over large volumes of data collected by mobile users. This is achieved …

Privacy and fairness in Federated learning: on the perspective of Tradeoff

H Chen, T Zhu, T Zhang, W Zhou, PS Yu - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has been a hot topic in recent years. Ever since it was introduced,
researchers have endeavored to devise FL systems that protect privacy or ensure fair …

Turbo-aggregate: Breaking the quadratic aggregation barrier in secure federated learning

J So, B Güler, AS Avestimehr - IEEE Journal on Selected Areas …, 2021 - ieeexplore.ieee.org
Federated learning is a distributed framework for training machine learning models over the
data residing at mobile devices, while protecting the privacy of individual users. A major …

A systematic literature review on federated machine learning: From a software engineering perspective

SK Lo, Q Lu, C Wang, HY Paik, L Zhu - ACM Computing Surveys (CSUR …, 2021 - dl.acm.org
Federated learning is an emerging machine learning paradigm where clients train models
locally and formulate a global model based on the local model updates. To identify the state …