Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review

H Altaheri, G Muhammad, M Alsulaiman… - Neural Computing and …, 2023 - Springer
The brain–computer interface (BCI) is an emerging technology that has the potential to
revolutionize the world, with numerous applications ranging from healthcare to human …

Deep learning for motor imagery EEG-based classification: A review

A Al-Saegh, SA Dawwd, JM Abdul-Jabbar - Biomedical Signal Processing …, 2021 - Elsevier
Objectives The availability of large and varied Electroencephalogram (EEG) datasets,
rapidly advances and inventions in deep learning techniques, and highly powerful and …

[HTML][HTML] Deep common spatial pattern based motor imagery classification with improved objective function

N Yu, R Yang, M Huang - International Journal of Network Dynamics and …, 2022 - sciltp.com
Common spatial pattern (CSP) technique has been very popular in terms of
electroencephalogram (EEG) features extraction in motor imagery (MI)-based brain …

Deep learning-based electroencephalography analysis: a systematic review

Y Roy, H Banville, I Albuquerque… - Journal of neural …, 2019 - iopscience.iop.org
Context. Electroencephalography (EEG) is a complex signal and can require several years
of training, as well as advanced signal processing and feature extraction methodologies to …

Neural decoding of EEG signals with machine learning: a systematic review

M Saeidi, W Karwowski, FV Farahani, K Fiok, R Taiar… - Brain Sciences, 2021 - mdpi.com
Electroencephalography (EEG) is a non-invasive technique used to record the brain's
evoked and induced electrical activity from the scalp. Artificial intelligence, particularly …

Brain-computer interface: Advancement and challenges

MF Mridha, SC Das, MM Kabir, AA Lima, MR Islam… - Sensors, 2021 - mdpi.com
Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain
based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the …

Correlation-based channel selection and regularized feature optimization for MI-based BCI

J **, Y Miao, I Daly, C Zuo, D Hu, A Cichocki - Neural Networks, 2019 - Elsevier
Multi-channel EEG data are usually necessary for spatial pattern identification in motor
imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some …

A comparative analysis of signal processing and classification methods for different applications based on EEG signals

A Khosla, P Khandnor, T Chand - Biocybernetics and Biomedical …, 2020 - Elsevier
Electroencephalogram (EEG) measures the neuronal activities in the form of electric
currents that are generated due to the synchronized activity by a group of specialized …

[HTML][HTML] EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier

A Subasi, T Tuncer, S Dogan, D Tanko… - … Signal Processing and …, 2021 - Elsevier
Emotion recognition by artificial intelligence (AI) is a challenging task. A wide variety of
research has been done, which demonstrated the utility of audio, imagery, and …

A review of critical challenges in MI-BCI: From conventional to deep learning methods

Z Khademi, F Ebrahimi, HM Kordy - Journal of Neuroscience Methods, 2023 - Elsevier
Brain-computer interfaces (BCIs) have achieved significant success in controlling external
devices through the Electroencephalogram (EEG) signal processing. BCI-based Motor …