Comparison of distance metrics on fuzzy C-means algorithm through customer segmentation
Distance metrics are often used in a similarity-based algorithm like clustering to improve the
performance when deciding to group data based on similarities. It has a crucial role when …
performance when deciding to group data based on similarities. It has a crucial role when …
Application of fuzzy -means clustering for analysis of chemical ionization mass spectra: insights into the gas phase chemistry of NO-initiated oxidation of isoprene
R Wu, SR Zorn, S Kang… - Atmospheric …, 2024 - amt.copernicus.org
Oxidation of volatile organic compounds (VOCs) can lead to the formation of secondary
organic aerosol (SOA), a significant component of atmospheric fine particles, which can …
organic aerosol (SOA), a significant component of atmospheric fine particles, which can …
Penerapan fuzzy c-means kluster untuk segmentasi pelanggan e-commerce dengan metode recency frequency monetary (rfm)
SS Prasetyo, M Mustafid, AR Hakim - Jurnal Gaussian, 2020 - ejournal3.undip.ac.id
E-commerce has become a medium for online shop** which is growing and popular
among the public. Due to the ease of access for all internet users and the completeness of …
among the public. Due to the ease of access for all internet users and the completeness of …
Penerapan Algoritma Fuzzy C Means untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi
R Rustiyan, M Mustakim - Jurnal Teknologi Informasi dan Ilmu Komputer, 2018 - jtiik.ub.ac.id
Koperasi mempunyai peranan penting bagi perekonomian Indonesia. Perkembangan
koperasi di Indonesia saat ini cukup pesat, pada data Badan Pusat Stastitik 3 tahun terakhir …
koperasi di Indonesia saat ini cukup pesat, pada data Badan Pusat Stastitik 3 tahun terakhir …
Robustness of classical fuzzy C-means (FCM)
Classical Fuzzy C-Means (FCM) was believed as a robust clustering method when it is
optimized and modified. But, at this time many researchers stated that classical FCM is less …
optimized and modified. But, at this time many researchers stated that classical FCM is less …
Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra: insights into the gas-phase chemistry of NO3-initiated oxidation of isoprene
R Wu, SR Zorn, S Kang, A Kiendler-Scharr… - …, 2023 - egusphere.copernicus.org
Oxidation of volatile organic compounds (VOCs) can lead to the formation of secondary
organic aerosol, a significant component of atmospheric fine particles, which can affect air …
organic aerosol, a significant component of atmospheric fine particles, which can affect air …
[PDF][PDF] Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Sistem Inferensi Fuzzy memerlukan beberapa tahap untuk mendapatkan output, 1)
pembentukan himpunan Fuzzy, 2) pembentukan aturan, 3) aplikasi fungsi implikasi, 4) …
pembentukan himpunan Fuzzy, 2) pembentukan aturan, 3) aplikasi fungsi implikasi, 4) …
K-means and fuzzy c-means algorithm comparison on regency/city grou** in Central Java Province
UW Latifah - Desimal: Jurnal Matematika, 2022 - ejournal.radenintan.ac.id
Abstract The Human Development Index (HDI) is very important in measuring the country's
success as an effort to build the quality of life of people in a region, including Indonesia. The …
success as an effort to build the quality of life of people in a region, including Indonesia. The …
[PDF][PDF] Analisa Perbandingan Pengelompokkan Curah Hujan 15 Harian Provinsi Diy Menggunakan Fuzzy Clustering Dan K-Means Clustering
J Suryanto - Jurnal AGRIFOR, 2017 - core.ac.uk
Clustering Dan K-means Clustering. Tujuan penelitian ini adalah membandingkan
pengelompokkan curah hujan 15 harian antara metode fuzzy c-means (FCM) dengan K …
pengelompokkan curah hujan 15 harian antara metode fuzzy c-means (FCM) dengan K …
Comparative study of distance measures on fuzzy subtractive clustering
Clustering is a data analysis process which applied to classify the unlabeled data. Fuzzy
clustering is a clustering method based on membership value which enclosing set of fuzzy …
clustering is a clustering method based on membership value which enclosing set of fuzzy …