Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] A survey on GANs for computer vision: Recent research, analysis and taxonomy
In the last few years, there have been several revolutions in the field of deep learning,
mainly headlined by the large impact of Generative Adversarial Networks (GANs). GANs not …
mainly headlined by the large impact of Generative Adversarial Networks (GANs). GANs not …
Ntire 2020 challenge on nonhomogeneous dehazing
This paper reviews the NTIRE 2020 Challenge on NonHomogeneous Dehazing of images
(restoration of rich details in hazy image). We focus on the proposed solutions and their …
(restoration of rich details in hazy image). We focus on the proposed solutions and their …
Promptir: Prompting for all-in-one image restoration
Image restoration involves recovering a high-quality clean image from its degraded version.
Deep learning-based methods have significantly improved image restoration performance …
Deep learning-based methods have significantly improved image restoration performance …
Mb-taylorformer: Multi-branch efficient transformer expanded by taylor formula for image dehazing
In recent years, Transformer networks are beginning to replace pure convolutional neural
networks (CNNs) in the field of computer vision due to their global receptive field and …
networks (CNNs) in the field of computer vision due to their global receptive field and …
All-in-one image restoration for unknown corruption
In this paper, we study a challenging problem in image restoration, namely, how to develop
an all-in-one method that could recover images from a variety of unknown corruption types …
an all-in-one method that could recover images from a variety of unknown corruption types …
Learning weather-general and weather-specific features for image restoration under multiple adverse weather conditions
Image restoration under multiple adverse weather conditions aims to remove weather-
related artifacts by using the single set of network parameters. In this paper, we find that …
related artifacts by using the single set of network parameters. In this paper, we find that …
Self-augmented unpaired image dehazing via density and depth decomposition
To overcome the overfitting issue of dehazing models trained on synthetic hazy-clean image
pairs, many recent methods attempted to improve models' generalization ability by training …
pairs, many recent methods attempted to improve models' generalization ability by training …
Contrastive learning for compact single image dehazing
Single image dehazing is a challenging ill-posed problem due to the severe information
degeneration. However, existing deep learning based dehazing methods only adopt clear …
degeneration. However, existing deep learning based dehazing methods only adopt clear …
Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive regularization: Toward a unified model
In this paper, an ill-posed problem of multiple adverse weather removal is investigated. Our
goal is to train a model with a'unified'architecture and only one set of pretrained weights that …
goal is to train a model with a'unified'architecture and only one set of pretrained weights that …
Learning to enhance low-light image via zero-reference deep curve estimation
This paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE),
which formulates light enhancement as a task of image-specific curve estimation with a deep …
which formulates light enhancement as a task of image-specific curve estimation with a deep …