Graph convolutional networks: a comprehensive review

S Zhang, H Tong, J Xu, R Maciejewski - Computational Social Networks, 2019 - Springer
Graphs naturally appear in numerous application domains, ranging from social analysis,
bioinformatics to computer vision. The unique capability of graphs enables capturing the …

The emerging trends of multi-label learning

W Liu, H Wang, X Shen… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Exabytes of data are generated daily by humans, leading to the growing needs for new
efforts in dealing with the grand challenges for multi-label learning brought by big data. For …

Asymmetric loss for multi-label classification

T Ridnik, E Ben-Baruch, N Zamir… - Proceedings of the …, 2021 - openaccess.thecvf.com
In a typical multi-label setting, a picture contains on average few positive labels, and many
negative ones. This positive-negative imbalance dominates the optimization process, and …

Multi-label image recognition with graph convolutional networks

ZM Chen, XS Wei, P Wang… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
The task of multi-label image recognition is to predict a set of object labels that present in an
image. As objects normally co-occur in an image, it is desirable to model the label …

Neural motifs: Scene graph parsing with global context

R Zellers, M Yatskar, S Thomson… - Proceedings of the …, 2018 - openaccess.thecvf.com
We investigate the problem of producing structured graph representations of visual scenes.
Our work analyzes the role of motifs: regularly appearing substructures in scene graphs. We …

General multi-label image classification with transformers

J Lanchantin, T Wang, V Ordonez… - Proceedings of the …, 2021 - openaccess.thecvf.com
Multi-label image classification is the task of predicting a set of labels corresponding to
objects, attributes or other entities present in an image. In this work we propose the …

DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis

R Wang, Y Jiang, J **, C Yin, H Yu… - Nucleic acids …, 2023 - academic.oup.com
Here, we present DeepBIO, the first-of-its-kind automated and interpretable deep-learning
platform for high-throughput biological sequence functional analysis. DeepBIO is a one-stop …

Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging

T Hollon, C Jiang, A Chowdury, M Nasir-Moin… - Nature medicine, 2023 - nature.com
Molecular classification has transformed the management of brain tumors by enabling more
accurate prognostication and personalized treatment. However, timely molecular diagnostic …

Distribution-balanced loss for multi-label classification in long-tailed datasets

T Wu, Q Huang, Z Liu, Y Wang, D Lin - … , Glasgow, UK, August 23–28, 2020 …, 2020 - Springer
We present a new loss function called Distribution-Balanced Loss for the multi-label
recognition problems that exhibit long-tailed class distributions. Compared to conventional …

Query2label: A simple transformer way to multi-label classification

S Liu, L Zhang, X Yang, H Su, J Zhu - arxiv preprint arxiv:2107.10834, 2021 - arxiv.org
This paper presents a simple and effective approach to solving the multi-label classification
problem. The proposed approach leverages Transformer decoders to query the existence of …