Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools
Background Brain cancer is a destructive and life-threatening disease that imposes
immense negative effects on patients' lives. Therefore, the detection of brain tumors at an …
immense negative effects on patients' lives. Therefore, the detection of brain tumors at an …
Image segmentation for MR brain tumor detection using machine learning: a review
Magnetic Resonance Imaging (MRI) has commonly been used to detect and diagnose brain
disease and monitor treatment as non-invasive imaging technology. MRI produces three …
disease and monitor treatment as non-invasive imaging technology. MRI produces three …
Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images
Semantic segmentation of brain tumors is a fundamental medical image analysis task
involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient …
involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient …
nnU-Net for brain tumor segmentation
We apply nnU-Net to the segmentation task of the BraTS 2020 challenge. The unmodified
nnU-Net baseline configuration already achieves a respectable result. By incorporating …
nnU-Net baseline configuration already achieves a respectable result. By incorporating …
Deep learning for cardiac image segmentation: a review
Deep learning has become the most widely used approach for cardiac image segmentation
in recent years. In this paper, we provide a review of over 100 cardiac image segmentation …
in recent years. In this paper, we provide a review of over 100 cardiac image segmentation …
Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs
Glaucoma is one of the leading causes of irreversible but preventable blindness in working
age populations. Color fundus photography (CFP) is the most cost-effective imaging …
age populations. Color fundus photography (CFP) is the most cost-effective imaging …
[HTML][HTML] A review: Deep learning for medical image segmentation using multi-modality fusion
Multi-modality is widely used in medical imaging, because it can provide multiinformation
about a target (tumor, organ or tissue). Segmentation using multimodality consists of fusing …
about a target (tumor, organ or tissue). Segmentation using multimodality consists of fusing …
3D MRI brain tumor segmentation using autoencoder regularization
A Myronenko - Brainlesion: Glioma, Multiple Sclerosis, Stroke and …, 2019 - Springer
Automated segmentation of brain tumors from 3D magnetic resonance images (MRIs) is
necessary for the diagnosis, monitoring, and treatment planning of the disease. Manual …
necessary for the diagnosis, monitoring, and treatment planning of the disease. Manual …
[HTML][HTML] Attention gated networks: Learning to leverage salient regions in medical images
We propose a novel attention gate (AG) model for medical image analysis that automatically
learns to focus on target structures of varying shapes and sizes. Models trained with AGs …
learns to focus on target structures of varying shapes and sizes. Models trained with AGs …
Attention u-net: Learning where to look for the pancreas
We propose a novel attention gate (AG) model for medical imaging that automatically learns
to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly …
to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly …