A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization

R Ahmed, V Sreeram, Y Mishra, MD Arif - Renewable and Sustainable …, 2020 - Elsevier
Integration of photovoltaics into power grids is difficult as solar energy is highly dependent
on climate and geography; often fluctuating erratically. This causes penetrations and voltage …

A review of very short-term wind and solar power forecasting

R Tawn, J Browell - Renewable and Sustainable Energy Reviews, 2022 - Elsevier
Installed capacities of wind and solar power have grown rapidly over recent years, and the
pool of literature on very short-term (minutes-to hours-ahead) wind and solar forecasting has …

A novel genetic LSTM model for wind power forecast

F Shahid, A Zameer, M Muneeb - Energy, 2021 - Elsevier
Variations of produced power in windmills may influence the appropriate integration in
power-driven grids which may disrupt the balance between electricity demand and its …

[HTML][HTML] Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models

E Sarmas, E Spiliotis, E Stamatopoulos, V Marinakis… - Renewable Energy, 2023 - Elsevier
Short-term photovoltaic (PV) power forecasting is essential for integrating renewable energy
sources into the grid as it provides accurate and timely information on the expected output of …

A review of deep learning with special emphasis on architectures, applications and recent trends

S Sengupta, S Basak, P Saikia, S Paul… - Knowledge-Based …, 2020 - Elsevier
Deep learning (DL) has solved a problem that a few years ago was thought to be intractable—
the automatic recognition of patterns in spatial and temporal data with an accuracy superior …

A survey of artificial neural network in wind energy systems

AP Marugán, FPG Márquez, JMP Perez… - Applied energy, 2018 - Elsevier
Wind energy has become one of the most important forms of renewable energy. Wind
energy conversion systems are more sophisticated and new approaches are required based …

Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges

P Lu, L Ye, Y Zhao, B Dai, M Pei, Y Tang - Applied Energy, 2021 - Elsevier
The integration of large-scale wind power introduces issues in modern power systems
operations due to its strong randomness and volatility. These issues can be resolved via …

A survey of machine learning models in renewable energy predictions

JP Lai, YM Chang, CH Chen, PF Pai - Applied Sciences, 2020 - mdpi.com
The use of renewable energy to reduce the effects of climate change and global warming
has become an increasing trend. In order to improve the prediction ability of renewable …

[HTML][HTML] Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model

M Méndez, MG Merayo, M Núñez - Engineering Applications of Artificial …, 2023 - Elsevier
The increase of road traffic in large cities during the last years has produced that long and
short-term traffic flow forecasting is a critical need for the authorities. The availability of good …

Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning

S Farah, N Humaira, Z Aneela, E Steffen - Renewable and Sustainable …, 2022 - Elsevier
In recent years, wind power has emerged as an important source of renewable energy.
When onshore and offshore wind farm regions are connected to the grid for power …