The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

A survey of machine unlearning

TT Nguyen, TT Huynh, Z Ren, PL Nguyen… - arxiv preprint arxiv …, 2022 - arxiv.org
Today, computer systems hold large amounts of personal data. Yet while such an
abundance of data allows breakthroughs in artificial intelligence, and especially machine …

A review on machine unlearning

H Zhang, T Nakamura, T Isohara, K Sakurai - SN Computer Science, 2023 - Springer
Recently, an increasing number of laws have governed the useability of users' privacy. For
example, Article 17 of the General Data Protection Regulation (GDPR), the right to be …

Rethinking machine unlearning for large language models

S Liu, Y Yao, J Jia, S Casper, N Baracaldo… - arxiv preprint arxiv …, 2024 - arxiv.org
We explore machine unlearning (MU) in the domain of large language models (LLMs),
referred to as LLM unlearning. This initiative aims to eliminate undesirable data influence …

Trustworthy LLMs: A survey and guideline for evaluating large language models' alignment

Y Liu, Y Yao, JF Ton, X Zhang, RGH Cheng… - arxiv preprint arxiv …, 2023 - arxiv.org
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …

Towards unbounded machine unlearning

M Kurmanji, P Triantafillou, J Hayes… - Advances in neural …, 2024 - proceedings.neurips.cc
Deep machine unlearning is the problem of'removing'from a trained neural network a subset
of its training set. This problem is very timely and has many applications, including the key …

Salun: Empowering machine unlearning via gradient-based weight saliency in both image classification and generation

C Fan, J Liu, Y Zhang, E Wong, D Wei, S Liu - arxiv preprint arxiv …, 2023 - arxiv.org
With evolving data regulations, machine unlearning (MU) has become an important tool for
fostering trust and safety in today's AI models. However, existing MU methods focusing on …

Remember what you want to forget: Algorithms for machine unlearning

A Sekhari, J Acharya, G Kamath… - Advances in Neural …, 2021 - proceedings.neurips.cc
We study the problem of unlearning datapoints from a learnt model. The learner first
receives a dataset $ S $ drawn iid from an unknown distribution, and outputs a model …

The right to be forgotten in federated learning: An efficient realization with rapid retraining

Y Liu, L Xu, X Yuan, C Wang, B Li - IEEE INFOCOM 2022-IEEE …, 2022 - ieeexplore.ieee.org
In Machine Learning, the emergence of the right to be forgotten gave birth to a paradigm
named machine unlearning, which enables data holders to proactively erase their data from …

In-context unlearning: Language models as few shot unlearners

M Pawelczyk, S Neel, H Lakkaraju - arxiv preprint arxiv:2310.07579, 2023 - arxiv.org
Machine unlearning, the study of efficiently removing the impact of specific training points on
the trained model, has garnered increased attention of late, driven by the need to comply …