Advances in the development of single‐atom catalysts for high‐energy‐density lithium–sulfur batteries

Z Liang, J Shen, X Xu, F Li, J Liu, B Yuan… - Advanced …, 2022 - Wiley Online Library
Although lithium–sulfur (Li–S) batteries are promising next‐generation energy‐storage
systems, their practical applications are limited by the growth of Li dendrites and lithium …

Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries

H Hao, T Hutter, BL Boyce, J Watt, P Liu… - Chemical …, 2022 - ACS Publications
Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based
cathodes are regarded as key for next-generation energy storage due to their high …

Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries

Z Shen, X **, J Tian, M Li, Y Yuan, S Zhang, S Fang… - Nature Catalysis, 2022 - nature.com
Catalytic conversion of polysulfides is regarded as a crucial approach to enhancing kinetics
and suppressing the shuttle effect in lithium–sulfur (Li–S) batteries. However, the activity …

Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics

Z Han, R Gao, T Wang, S Tao, Y Jia, Z Lao, M Zhang… - Nature Catalysis, 2023 - nature.com
The catalytic conversion of lithium polysulfides is a promising way to inhibit the shuttling
effect in Li–S batteries. However, the mechanism of such catalytic systems remains unclear …

A review on theoretical models for lithium–sulfur battery cathodes

S Feng, ZH Fu, X Chen, Q Zhang - InfoMat, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have been considered as promising battery systems
due to their huge advantages on theoretical energy density and rich resources. However …

Advances in lithium–sulfur batteries: from academic research to commercial viability

Y Chen, T Wang, H Tian, D Su, Q Zhang… - Advanced …, 2021 - Wiley Online Library
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …

Engineering d‐p Orbital Hybridization in Single‐Atom Metal‐Embedded Three‐Dimensional Electrodes for Li–S Batteries

Z Han, S Zhao, J **ao, X Zhong, J Sheng… - Advanced …, 2021 - Wiley Online Library
Single‐atom metal catalysts (SACs) are used as sulfur cathode additives to promote battery
performance, although the material selection and mechanism that govern the catalytic …

Establishing reaction networks in the 16-electron sulfur reduction reaction

R Liu, Z Wei, L Peng, L Zhang, A Zohar, R Schoeppner… - Nature, 2024 - nature.com
The sulfur reduction reaction (SRR) plays a central role in high-capacity lithium sulfur (Li-S)
batteries. The SRR involves an intricate, 16-electron conversion process featuring multiple …

Emerging catalysts to promote kinetics of lithium–sulfur batteries

P Wang, B **, M Huang, W Chen… - Advanced Energy …, 2021 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with a high theoretical capacity of 1675 mAh g− 1 hold
promise in the realm of high‐energy‐density Li–metal batteries. To cope with the shuttle …