Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Machine learning methods for small data challenges in molecular science
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
AI in drug discovery and its clinical relevance
The COVID-19 pandemic has emphasized the need for novel drug discovery process.
However, the journey from conceptualizing a drug to its eventual implementation in clinical …
However, the journey from conceptualizing a drug to its eventual implementation in clinical …
The transformational role of GPU computing and deep learning in drug discovery
Deep learning has disrupted nearly every field of research, including those of direct
importance to drug discovery, such as medicinal chemistry and pharmacology. This …
importance to drug discovery, such as medicinal chemistry and pharmacology. This …
Revolutionizing the structural design and determination of covalent–organic frameworks: principles, methods, and techniques
Y Liu, X Liu, A Su, C Gong, S Chen, L **a… - Chemical Society …, 2024 - pubs.rsc.org
Covalent organic frameworks (COFs) represent an important class of crystalline porous
materials with designable structures and functions. The interconnected organic monomers …
materials with designable structures and functions. The interconnected organic monomers …
Artificial intelligence for science in quantum, atomistic, and continuum systems
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …
[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …
uncertainties during both optimization and decision making processes. They have been …
Artificial intelligence in drug discovery: recent advances and future perspectives
Introduction: Artificial intelligence (AI) has inspired computer-aided drug discovery. The
widespread adoption of machine learning, in particular deep learning, in multiple scientific …
widespread adoption of machine learning, in particular deep learning, in multiple scientific …
Drug discovery with explainable artificial intelligence
Deep learning bears promise for drug discovery, including advanced image analysis,
prediction of molecular structure and function, and automated generation of innovative …
prediction of molecular structure and function, and automated generation of innovative …
Artificial intelligence for natural product drug discovery
Developments in computational omics technologies have provided new means to access
the hidden diversity of natural products, unearthing new potential for drug discovery. In …
the hidden diversity of natural products, unearthing new potential for drug discovery. In …
Computational discovery of transition-metal complexes: from high-throughput screening to machine learning
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
materials. The behavior of the metal–organic bond, while very tunable for achieving target …