Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive review of object detection with deep learning
R Kaur, S Singh - Digital Signal Processing, 2023 - Elsevier
In the realm of computer vision, Deep Convolutional Neural Networks (DCNNs) have
demonstrated excellent performance. Video Processing, Object Detection, Image …
demonstrated excellent performance. Video Processing, Object Detection, Image …
3D object detection for autonomous driving: A comprehensive survey
Autonomous driving, in recent years, has been receiving increasing attention for its potential
to relieve drivers' burdens and improve the safety of driving. In modern autonomous driving …
to relieve drivers' burdens and improve the safety of driving. In modern autonomous driving …
Logonet: Towards accurate 3d object detection with local-to-global cross-modal fusion
LiDAR-camera fusion methods have shown impressive performance in 3D object detection.
Recent advanced multi-modal methods mainly perform global fusion, where image features …
Recent advanced multi-modal methods mainly perform global fusion, where image features …
Bytetrack: Multi-object tracking by associating every detection box
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in
videos. Most methods obtain identities by associating detection boxes whose scores are …
videos. Most methods obtain identities by associating detection boxes whose scores are …
Fcos3d: Fully convolutional one-stage monocular 3d object detection
Monocular 3D object detection is an important task for autonomous driving considering its
advantage of low cost. It is much more challenging than conventional 2D cases due to its …
advantage of low cost. It is much more challenging than conventional 2D cases due to its …
Is pseudo-lidar needed for monocular 3d object detection?
Recent progress in 3D object detection from single images leverages monocular depth
estimation as a way to produce 3D pointclouds, turning cameras into pseudo-lidar sensors …
estimation as a way to produce 3D pointclouds, turning cameras into pseudo-lidar sensors …
Categorical depth distribution network for monocular 3d object detection
Monocular 3D object detection is a key problem for autonomous vehicles, as it provides a
solution with simple configuration compared to typical multi-sensor systems. The main …
solution with simple configuration compared to typical multi-sensor systems. The main …
3D object detection for autonomous driving: A survey
Autonomous driving is regarded as one of the most promising remedies to shield human
beings from severe crashes. To this end, 3D object detection serves as the core basis of …
beings from severe crashes. To this end, 3D object detection serves as the core basis of …
Point density-aware voxels for lidar 3d object detection
LiDAR has become one of the primary 3D object detection sensors in autonomous driving.
However, LiDAR's diverging point pattern with increasing distance results in a non-uniform …
However, LiDAR's diverging point pattern with increasing distance results in a non-uniform …
Monodtr: Monocular 3d object detection with depth-aware transformer
Monocular 3D object detection is an important yet challenging task in autonomous driving.
Some existing methods leverage depth information from an off-the-shelf depth estimator to …
Some existing methods leverage depth information from an off-the-shelf depth estimator to …