Artificial intelligence: A powerful paradigm for scientific research

Y Xu, X Liu, X Cao, C Huang, E Liu, S Qian, X Liu… - The Innovation, 2021 - cell.com
Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well
known from computer science is broadly affecting many aspects of various fields including …

Dye-sensitized solar cells strike back

AB Muñoz-García, I Benesperi, G Boschloo… - Chemical Society …, 2021 - pubs.rsc.org
Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting
a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs …

The rise of self-driving labs in chemical and materials sciences

M Abolhasani, E Kumacheva - Nature Synthesis, 2023 - nature.com
Accelerating the discovery of new molecules and materials, as well as develo** green
and sustainable ways to synthesize them, will help to address global challenges in energy …

Artificial intelligence applied to battery research: hype or reality?

T Lombardo, M Duquesnoy, H El-Bouysidy… - Chemical …, 2021 - ACS Publications
This is a critical review of artificial intelligence/machine learning (AI/ML) methods applied to
battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily …

Emerging Strategies for CO2 Photoreduction to CH4: From Experimental to Data‐Driven Design

S Cheng, Z Sun, KH Lim, TZH Gani… - Advanced Energy …, 2022 - Wiley Online Library
The solar‐energy‐driven photoreduction of CO2 has recently emerged as a promising
approach to directly transform CO2 into valuable energy sources under mild conditions. As a …

Human-and machine-centred designs of molecules and materials for sustainability and decarbonization

J Peng, D Schwalbe-Koda, K Akkiraju, T **e… - Nature Reviews …, 2022 - nature.com
Breakthroughs in molecular and materials discovery require meaningful outliers to be
identified in existing trends. As knowledge accumulates, the inherent bias of human intuition …

SELFIES and the future of molecular string representations

M Krenn, Q Ai, S Barthel, N Carson, A Frei, NC Frey… - Patterns, 2022 - cell.com
Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad
applications to challenging tasks in chemistry and materials science. Examples include the …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …

Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data

V Gupta, K Choudhary, F Tavazza, C Campbell… - Nature …, 2021 - nature.com
Artificial intelligence (AI) and machine learning (ML) have been increasingly used in
materials science to build predictive models and accelerate discovery. For selected …

Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation

Y **e, K Sattari, C Zhang, J Lin - Progress in Materials Science, 2023 - Elsevier
The ever-increasing demand for novel materials with superior properties inspires retrofitting
traditional research paradigms in the era of artificial intelligence and automation. An …