Scientific machine learning through physics–informed neural networks: Where we are and what's next
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …
model equations, like Partial Differential Equations (PDE), as a component of the neural …
Physics-informed machine learning
Despite great progress in simulating multiphysics problems using the numerical
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate …
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate …
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …
large amount of data to achieve exceptional performance. Unfortunately, many applications …
Characterizing possible failure modes in physics-informed neural networks
Recent work in scientific machine learning has developed so-called physics-informed neural
network (PINN) models. The typical approach is to incorporate physical domain knowledge …
network (PINN) models. The typical approach is to incorporate physical domain knowledge …
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Despite the significant progress over the last 50 years in simulating flow problems using
numerical discretization of the Navier–Stokes equations (NSE), we still cannot incorporate …
numerical discretization of the Navier–Stokes equations (NSE), we still cannot incorporate …
Physics-informed neural operator for learning partial differential equations
In this article, we propose physics-informed neural operators (PINO) that combine training
data and physics constraints to learn the solution operator of a given family of parametric …
data and physics constraints to learn the solution operator of a given family of parametric …
Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges
The computerized simulations of physical and socio-economic systems have proliferated in
the past decade, at the same time, the capability to develop high-fidelity system predictive …
the past decade, at the same time, the capability to develop high-fidelity system predictive …
Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
It is widely known that neural networks (NNs) are universal approximators of continuous
functions. However, a less known but powerful result is that a NN with a single hidden layer …
functions. However, a less known but powerful result is that a NN with a single hidden layer …
Interpretable machine learning: Fundamental principles and 10 grand challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
We present the application of a class of deep learning, known as Physics Informed Neural
Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how …
Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how …