Community detection in node-attributed social networks: a survey

P Chunaev - Computer Science Review, 2020 - Elsevier
Community detection is a fundamental problem in social network analysis consisting,
roughly speaking, in unsupervised dividing social actors (modeled as nodes in a social …

A survey of community search over big graphs

Y Fang, X Huang, L Qin, Y Zhang, W Zhang, R Cheng… - The VLDB Journal, 2020 - Springer
With the rapid development of information technologies, various big graphs are prevalent in
many real applications (eg, social media and knowledge bases). An important component of …

Fast federated machine unlearning with nonlinear functional theory

T Che, Y Zhou, Z Zhang, L Lyu, J Liu… - International …, 2023 - proceedings.mlr.press
Federated machine unlearning (FMU) aims to remove the influence of a specified subset of
training data upon request from a trained federated learning model. Despite achieving …

A novel method of spectral clustering in attributed networks by constructing parameter-free affinity matrix

K Berahmand, M Mohammadi, A Faroughi… - Cluster …, 2022 - Springer
The most basic and significant issue in complex network analysis is community detection,
which is a branch of machine learning. Most current community detection approaches, only …

Attribute truss community search

X Huang, LVS Lakshmanan - arxiv preprint arxiv:1609.00090, 2016 - arxiv.org
Recently, community search over graphs has attracted significant attention and many
algorithms have been developed for finding dense subgraphs from large graphs that contain …

Expressive 1-lipschitz neural networks for robust multiple graph learning against adversarial attacks

X Zhao, Z Zhang, Z Zhang, L Wu, J **… - International …, 2021 - proceedings.mlr.press
Recent findings have shown multiple graph learning models, such as graph classification
and graph matching, are highly vulnerable to adversarial attacks, ie small input …

Adversarial attacks on deep graph matching

Z Zhang, Z Zhang, Y Zhou, Y Shen… - Advances in Neural …, 2020 - proceedings.neurips.cc
Despite achieving remarkable performance, deep graph learning models, such as node
classification and network embedding, suffer from harassment caused by small adversarial …

Community search over big graphs: Models, algorithms, and opportunities

X Huang, LVS Lakshmanan, J Xu - 2017 IEEE 33rd …, 2017 - ieeexplore.ieee.org
Communities serve as basic structures for understanding the organization of many real-
world networks, such as social, biological, collaboration, and communication networks …

Integrated defense for resilient graph matching

J Ren, Z Zhang, J **, X Zhao, S Wu… - International …, 2021 - proceedings.mlr.press
A recent study has shown that graph matching models are vulnerable to adversarial
manipulation of their input which is intended to cause a mismatching. Nevertheless, there is …

Unsupervised adversarial network alignment with reinforcement learning

Y Zhou, J Ren, R **, Z Zhang, J Zheng… - ACM Transactions on …, 2021 - dl.acm.org
Network alignment, which aims at learning a matching between the same entities across
multiple information networks, often suffers challenges from feature inconsistency, high …