A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
A comprehensive study of class incremental learning algorithms for visual tasks
The ability of artificial agents to increment their capabilities when confronted with new data is
an open challenge in artificial intelligence. The main challenge faced in such cases is …
an open challenge in artificial intelligence. The main challenge faced in such cases is …
Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
Three types of incremental learning
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …
'continual learning', is a key feature of natural intelligence, but a challenging problem for …
S-prompts learning with pre-trained transformers: An occam's razor for domain incremental learning
State-of-the-art deep neural networks are still struggling to address the catastrophic
forgetting problem in continual learning. In this paper, we propose one simple paradigm …
forgetting problem in continual learning. In this paper, we propose one simple paradigm …
Der: Dynamically expandable representation for class incremental learning
We address the problem of class incremental learning, which is a core step towards
achieving adaptive vision intelligence. In particular, we consider the task setting of …
achieving adaptive vision intelligence. In particular, we consider the task setting of …
Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
Class-incremental learning: A survey
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
Prototype augmentation and self-supervision for incremental learning
Despite the impressive performance in many individual tasks, deep neural networks suffer
from catastrophic forgetting when learning new tasks incrementally. Recently, various …
from catastrophic forgetting when learning new tasks incrementally. Recently, various …
Class-incremental learning: survey and performance evaluation on image classification
For future learning systems, incremental learning is desirable because it allows for: efficient
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …