Medical image segmentation review: The success of u-net
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …
Machine learning for medical imaging: methodological failures and recommendations for the future
Research in computer analysis of medical images bears many promises to improve patients'
health. However, a number of systematic challenges are slowing down the progress of the …
health. However, a number of systematic challenges are slowing down the progress of the …
Segment anything in medical images
Medical image segmentation is a critical component in clinical practice, facilitating accurate
diagnosis, treatment planning, and disease monitoring. However, existing methods, often …
diagnosis, treatment planning, and disease monitoring. However, existing methods, often …
Segment anything model for medical image analysis: an experimental study
Training segmentation models for medical images continues to be challenging due to the
limited availability of data annotations. Segment Anything Model (SAM) is a foundation …
limited availability of data annotations. Segment Anything Model (SAM) is a foundation …
Segment anything model for medical images?
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …
segmentation. It has achieved impressive results on various natural image segmentation …
[HTML][HTML] TotalSegmentator: robust segmentation of 104 anatomic structures in CT images
J Wasserthal, HC Breit, MT Meyer… - Radiology: Artificial …, 2023 - ncbi.nlm.nih.gov
Purpose To present a deep learning segmentation model that can automatically and
robustly segment all major anatomic structures on body CT images. Materials and Methods …
robustly segment all major anatomic structures on body CT images. Materials and Methods …
Advances in medical image analysis with vision transformers: a comprehensive review
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …
has recently also triggered broad interest in Computer Vision. Among other merits …
U-mamba: Enhancing long-range dependency for biomedical image segmentation
Convolutional Neural Networks (CNNs) and Transformers have been the most popular
architectures for biomedical image segmentation, but both of them have limited ability to …
architectures for biomedical image segmentation, but both of them have limited ability to …
Transformers in medical imaging: A survey
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …
successfully applied to several computer vision problems, achieving state-of-the-art results …
Self-supervised pre-training of swin transformers for 3d medical image analysis
Abstract Vision Transformers (ViT) s have shown great performance in self-supervised
learning of global and local representations that can be transferred to downstream …
learning of global and local representations that can be transferred to downstream …