Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Data clustering: application and trends
Clustering has primarily been used as an analytical technique to group unlabeled data for
extracting meaningful information. The fact that no clustering algorithm can solve all …
extracting meaningful information. The fact that no clustering algorithm can solve all …
Learning under concept drift: A review
Concept drift describes unforeseeable changes in the underlying distribution of streaming
data overtime. Concept drift research involves the development of methodologies and …
data overtime. Concept drift research involves the development of methodologies and …
[HTML][HTML] Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches
Attack and anomaly detection in the Internet of Things (IoT) infrastructure is a rising concern
in the domain of IoT. With the increased use of IoT infrastructure in every domain, threats …
in the domain of IoT. With the increased use of IoT infrastructure in every domain, threats …
Progress in outlier detection techniques: A survey
Detecting outliers is a significant problem that has been studied in various research and
application areas. Researchers continue to design robust schemes to provide solutions to …
application areas. Researchers continue to design robust schemes to provide solutions to …
[HTML][HTML] A survey on machine learning for recurring concept drifting data streams
The problem of concept drift has gained a lot of attention in recent years. This aspect is key
in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks …
in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks …
River: machine learning for streaming data in python
River is a machine learning library for dynamic data streams and continual learning. It
provides multiple state-of-the-art learning methods, data generators/transformers …
provides multiple state-of-the-art learning methods, data generators/transformers …
A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
Clustering is an essential tool in data mining research and applications. It is the subject of
active research in many fields of study, such as computer science, data science, statistics …
active research in many fields of study, such as computer science, data science, statistics …
Adaptive random forests for evolving data stream classification
Random forests is currently one of the most used machine learning algorithms in the non-
streaming (batch) setting. This preference is attributable to its high learning performance and …
streaming (batch) setting. This preference is attributable to its high learning performance and …
Machine learning for streaming data: state of the art, challenges, and opportunities
Incremental learning, online learning, and data stream learning are terms commonly
associated with learning algorithms that update their models given a continuous influx of …
associated with learning algorithms that update their models given a continuous influx of …
A comprehensive survey of clustering algorithms
Data analysis is used as a common method in modern science research, which is across
communication science, computer science and biology science. Clustering, as the basic …
communication science, computer science and biology science. Clustering, as the basic …