Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Intelligent problem-solving as integrated hierarchical reinforcement learning
According to cognitive psychology and related disciplines, the development of complex
problem-solving behaviour in biological agents depends on hierarchical cognitive …
problem-solving behaviour in biological agents depends on hierarchical cognitive …
A survey on neural-symbolic learning systems
D Yu, B Yang, D Liu, H Wang, S Pan - Neural Networks, 2023 - Elsevier
In recent years, neural systems have demonstrated highly effective learning ability and
superior perception intelligence. However, they have been found to lack effective reasoning …
superior perception intelligence. However, they have been found to lack effective reasoning …
Neuro-symbolic artificial intelligence: Current trends
Neuro-Symbolic Artificial Intelligence–the combination of symbolic methods with methods
that are based on artificial neural networks–has a long-standing history. In this article, we …
that are based on artificial neural networks–has a long-standing history. In this article, we …
Logicseg: Parsing visual semantics with neural logic learning and reasoning
Current high-performance semantic segmentation models are purely data-driven sub-
symbolic approaches and blind to the structured nature of the visual world. This is in stark …
symbolic approaches and blind to the structured nature of the visual world. This is in stark …
Deep reinforcement learning
SE Li - Reinforcement learning for sequential decision and …, 2023 - Springer
Similar to humans, RL agents use interactive learning to successfully obtain satisfactory
decision strategies. However, in many cases, it is desirable to learn directly from …
decision strategies. However, in many cases, it is desirable to learn directly from …
A survey on interpretable reinforcement learning
Although deep reinforcement learning has become a promising machine learning approach
for sequential decision-making problems, it is still not mature enough for high-stake domains …
for sequential decision-making problems, it is still not mature enough for high-stake domains …
Learning neuro-symbolic skills for bilevel planning
Decision-making is challenging in robotics environments with continuous object-centric
states, continuous actions, long horizons, and sparse feedback. Hierarchical approaches …
states, continuous actions, long horizons, and sparse feedback. Hierarchical approaches …
SDRL: interpretable and data-efficient deep reinforcement learning leveraging symbolic planning
Deep reinforcement learning (DRL) has gained great success by learning directly from high-
dimensional sensory inputs, yet is notorious for the lack of interpretability. Interpretability of …
dimensional sensory inputs, yet is notorious for the lack of interpretability. Interpretability of …
Symbolic plans as high-level instructions for reinforcement learning
Reinforcement learning (RL) agents seek to maximize the cumulative reward obtained when
interacting with their environment. Users define tasks or goals for RL agents by designing …
interacting with their environment. Users define tasks or goals for RL agents by designing …
Structure in deep reinforcement learning: A survey and open problems
Reinforcement Learning (RL), bolstered by the expressive capabilities of Deep Neural
Networks (DNNs) for function approximation, has demonstrated considerable success in …
Networks (DNNs) for function approximation, has demonstrated considerable success in …