Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries

J Liu, J Wang, Y Ni, K Zhang, F Cheng, J Chen - Materials Today, 2021 - Elsevier
Ni-rich layered oxides (NRLOs) and Li-rich layered oxides (LRLOs) have been considered
as promising next-generation cathode materials for lithium ion batteries (LIBs) due to their …

From lithium‐ion to sodium‐ion batteries: advantages, challenges, and surprises

PK Nayak, L Yang, W Brehm… - Angewandte Chemie …, 2018 - Wiley Online Library
Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal
and economical relevance. Lithium‐ion battery (LIB) technology is at the forefront of the …

Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni‐rich NCM and Li‐rich HE‐NCM cathode materials …

L de Biasi, B Schwarz, T Brezesinski… - Advanced …, 2019 - Wiley Online Library
In order to satisfy the energy demands of the electromobility market, both Ni‐rich and Li‐rich
layered oxides of NCM type are receiving much attention as high‐energy‐density cathode …

Oxygen release degradation in Li‐ion battery cathode materials: mechanisms and mitigating approaches

S Sharifi‐Asl, J Lu, K Amine… - Advanced Energy …, 2019 - Wiley Online Library
Widespread application of Li‐ion batteries (LIBs) in large‐scale transportation and grid
storage systems requires highly stable and safe performance of the batteries in prolonged …

Review on challenges and recent advances in the electrochemical performance of high capacity Li‐and Mn‐rich cathode materials for Li‐ion batteries

PK Nayak, EM Erickson, F Schipper… - Advanced Energy …, 2018 - Wiley Online Library
Li and Mn‐rich layered oxides, xLi2MnO3·(1–x) LiMO2 (M= Ni, Mn, Co), are promising
cathode materials for Li‐ion batteries because of their high specific capacity that can exceed …

Do** strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries

G Ko, S Jeong, S Park, J Lee, S Kim, Y Shin… - Energy Storage …, 2023 - Elsevier
Lithium-ion batteries (LIBs) are pivotal in the electric vehicle (EV) era, and LiNi 1-xy Co x Mn
y O 2 (NCM) is the most dominant type of LIB cathode materials for EVs. The Ni content in …

Voltage decay of Li‐rich layered oxides: mechanism, modification strategies, and perspectives

L Zeng, H Liang, B Qiu, Z Shi, S Cheng… - Advanced Functional …, 2023 - Wiley Online Library
Li‐rich layered oxides (LLOs) have been considered as the most promising cathode
materials for achieving high energy density Li‐ion batteries. However, they suffer from …

A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries

X Ji, Q **a, Y Xu, H Feng, P Wang, Q Tan - Journal of Power Sources, 2021 - Elsevier
With the increasing demand for energy, layered lithium-rich manganese-based (Li-rich Mn-
based) materials have attracted extensive attention because of their high capacity and high …

Dielectric Polarization in Inverse Spinel‐Structured Mg2TiO4 Coating to Suppress Oxygen Evolution of Li‐Rich Cathode Materials

W Zhang, Y Sun, H Deng, J Ma, Y Zeng… - Advanced …, 2020 - Wiley Online Library
High‐energy Li‐rich layered cathode materials (≈ 900 Wh kg− 1) suffer from severe
capacity and voltage decay during cycling, which is associated with layered‐to‐spinel phase …

Understanding Lattice Oxygen Redox Behavior in Lithium‐Rich Manganese‐Based Layered Oxides for Lithium‐Ion and Lithium‐Metal Batteries from Reaction …

C Shen, L Hu, Q Duan, X Liu, S Huang… - Advanced Energy …, 2023 - Wiley Online Library
Lithium‐rich manganese‐based layered oxides (LMLOs) are considered to be one type of
the most promising materials for next‐generation cathodes of lithium batteries due to their …