Weakly supervised object localization and detection: A survey

D Zhang, J Han, G Cheng… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
As an emerging and challenging problem in the computer vision community, weakly
supervised object localization and detection plays an important role for develo** new …

[HTML][HTML] A dual-branch weakly supervised learning based network for accurate map** of woody vegetation from remote sensing images

Y Cheng, S Lan, X Fan, T Tjahjadi, S **… - International Journal of …, 2023 - Elsevier
Map** woody vegetation from aerial images is an important task bluein environment
monitoring and management. A few studies have shown that semantic segmentation …

Segnext: Rethinking convolutional attention design for semantic segmentation

MH Guo, CZ Lu, Q Hou, Z Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
We present SegNeXt, a simple convolutional network architecture for semantic
segmentation. Recent transformer-based models have dominated the field of se-mantic …

Token contrast for weakly-supervised semantic segmentation

L Ru, H Zheng, Y Zhan, B Du - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Abstract Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels
typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the …

Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers

L Ru, Y Zhan, B Yu, B Du - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Weakly-supervised semantic segmentation (WSSS) with image-level labels is an important
and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS …

Layercam: Exploring hierarchical class activation maps for localization

PT Jiang, CB Zhang, Q Hou… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
The class activation maps are generated from the final convolutional layer of CNN. They can
highlight discriminative object regions for the class of interest. These discovered object …

Pre-trained image processing transformer

H Chen, Y Wang, T Guo, C Xu… - Proceedings of the …, 2021 - openaccess.thecvf.com
As the computing power of modern hardware is increasing strongly, pre-trained deep
learning models (eg, BERT, GPT-3) learned on large-scale datasets have shown their …

Clip is also an efficient segmenter: A text-driven approach for weakly supervised semantic segmentation

Y Lin, M Chen, W Wang, B Wu, K Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging
task. Mainstream approaches follow a multi-stage framework and suffer from high training …

Class re-activation maps for weakly-supervised semantic segmentation

Z Chen, T Wang, X Wu, XS Hua… - Proceedings of the …, 2022 - openaccess.thecvf.com
Extracting class activation maps (CAM) is arguably the most standard step of generating
pseudo masks for weakly-supervised semantic segmentation (WSSS). Yet, we find that the …

Regional semantic contrast and aggregation for weakly supervised semantic segmentation

T Zhou, M Zhang, F Zhao, J Li - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Learning semantic segmentation from weakly-labeled (eg, image tags only) data is
challenging since it is hard to infer dense object regions from sparse semantic tags. Despite …