Quantum simulation
Simulating quantum mechanics is known to be a difficult computational problem, especially
when dealing with large systems. However, this difficulty may be overcome by using some …
when dealing with large systems. However, this difficulty may be overcome by using some …
Colloquium: Atomic quantum gases in periodically driven optical lattices
A Eckardt - Reviews of Modern Physics, 2017 - APS
Time-periodic forcing in the form of coherent radiation is a standard tool for the coherent
manipulation of small quantum systems like single atoms. In the last years, periodic driving …
manipulation of small quantum systems like single atoms. In the last years, periodic driving …
Quantum simulations with ultracold quantum gases
Ultracold quantum gases offer a unique setting for quantum simulation of interacting many-
body systems. The high degree of controllability, the novel detection possibilities and the …
body systems. The high degree of controllability, the novel detection possibilities and the …
Tools for quantum simulation with ultracold atoms in optical lattices
After many years of development of the basic tools, quantum simulation with ultracold atoms
has now reached the level of maturity at which it can be used to investigate complex …
has now reached the level of maturity at which it can be used to investigate complex …
Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator
The modern description of elementary particles, as formulated in the standard model of
particle physics, is built on gauge theories. Gauge theories implement fundamental laws of …
particle physics, is built on gauge theories. Gauge theories implement fundamental laws of …
Quantum simulations with ultracold atoms in optical lattices
Quantum simulation, a subdiscipline of quantum computation, can provide valuable insight
into difficult quantum problems in physics or chemistry. Ultracold atoms in optical lattices …
into difficult quantum problems in physics or chemistry. Ultracold atoms in optical lattices …
Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins
The presence of long-range quantum spin correlations underlies a variety of physical
phenomena in condensed-matter systems, potentially including high-temperature …
phenomena in condensed-matter systems, potentially including high-temperature …
Generalized Gibbs ensemble in integrable lattice models
The generalized Gibbs ensemble (GGE) was introduced ten years ago to describe
observables in isolated integrable quantum systems after equilibration. Since then, the GGE …
observables in isolated integrable quantum systems after equilibration. Since then, the GGE …
Reconstructing quantum states with generative models
A major bottleneck in the development of scalable many-body quantum technologies is the
difficulty in benchmarking state preparations, which suffer from an exponential 'curse of …
difficulty in benchmarking state preparations, which suffer from an exponential 'curse of …
Observation of many-body scarring in a Bose-Hubbard quantum simulator
The ongoing quest for understanding nonequilibrium dynamics of complex quantum
systems underpins the foundation of statistical physics as well as the development of …
systems underpins the foundation of statistical physics as well as the development of …