[HTML][HTML] Applications of reinforcement learning in energy systems
Energy systems undergo major transitions to facilitate the large-scale penetration of
renewable energy technologies and improve efficiencies, leading to the integration of many …
renewable energy technologies and improve efficiencies, leading to the integration of many …
A survey on model-based reinforcement learning
Reinforcement learning (RL) interacts with the environment to solve sequential decision-
making problems via a trial-and-error approach. Errors are always undesirable in real-world …
making problems via a trial-and-error approach. Errors are always undesirable in real-world …
Planning with diffusion for flexible behavior synthesis
Model-based reinforcement learning methods often use learning only for the purpose of
estimating an approximate dynamics model, offloading the rest of the decision-making work …
estimating an approximate dynamics model, offloading the rest of the decision-making work …
Mastering atari, go, chess and shogi by planning with a learned model
Constructing agents with planning capabilities has long been one of the main challenges in
the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge …
the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge …
When to trust your model: Model-based policy optimization
Designing effective model-based reinforcement learning algorithms is difficult because the
ease of data generation must be weighed against the bias of model-generated data. In this …
ease of data generation must be weighed against the bias of model-generated data. In this …
Model-based reinforcement learning with value-targeted regression
This paper studies model-based reinforcement learning (RL) for regret minimization. We
focus on finite-horizon episodic RL where the transition model $ P $ belongs to a known …
focus on finite-horizon episodic RL where the transition model $ P $ belongs to a known …
Flambe: Structural complexity and representation learning of low rank mdps
In order to deal with the curse of dimensionality in reinforcement learning (RL), it is common
practice to make parametric assumptions where values or policies are functions of some low …
practice to make parametric assumptions where values or policies are functions of some low …
Revisiting the arcade learning environment: Evaluation protocols and open problems for general agents
The Arcade Learning Environment (ALE) is an evaluation platform that poses the challenge
of building AI agents with general competency across dozens of Atari 2600 games. It …
of building AI agents with general competency across dozens of Atari 2600 games. It …
Model-based rl in contextual decision processes: Pac bounds and exponential improvements over model-free approaches
We study the sample complexity of model-based reinforcement learning (henceforth RL) in
general contextual decision processes that require strategic exploration to find a near …
general contextual decision processes that require strategic exploration to find a near …
Model-free representation learning and exploration in low-rank mdps
The low-rank MDP has emerged as an important model for studying representation learning
and exploration in reinforcement learning. With a known representation, several model-free …
and exploration in reinforcement learning. With a known representation, several model-free …