Scientific machine learning through physics–informed neural networks: Where we are and what's next

S Cuomo, VS Di Cola, F Giampaolo, G Rozza… - Journal of Scientific …, 2022 - Springer
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …

Physics-informed neural networks (PINNs) for fluid mechanics: A review

S Cai, Z Mao, Z Wang, M Yin, GE Karniadakis - Acta Mechanica Sinica, 2021 - Springer
Despite the significant progress over the last 50 years in simulating flow problems using
numerical discretization of the Navier–Stokes equations (NSE), we still cannot incorporate …

A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

C Wu, M Zhu, Q Tan, Y Kartha, L Lu - Computer Methods in Applied …, 2023 - Elsevier
Physics-informed neural networks (PINNs) have shown to be effective tools for solving both
forward and inverse problems of partial differential equations (PDEs). PINNs embed the …

Physics-informed neural networks for heat transfer problems

S Cai, Z Wang, S Wang… - Journal of Heat …, 2021 - asmedigitalcollection.asme.org
Physics-informed neural networks (PINNs) have gained popularity across different
engineering fields due to their effectiveness in solving realistic problems with noisy data and …

Self-adaptive loss balanced physics-informed neural networks

Z **ang, W Peng, X Liu, W Yao - Neurocomputing, 2022 - Elsevier
Physics-informed neural networks (PINNs) have received significant attention as a
representative deep learning-based technique for solving partial differential equations …

Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial …

AD Jagtap, GE Karniadakis - Communications in Computational Physics, 2020 - osti.gov
Here we propose a generalized space-time domain decomposition approach for the physics-
informed neural networks (PINNs) to solve nonlinear partial differential equations (PDEs) on …

Physics-informed neural networks for inverse problems in supersonic flows

AD Jagtap, Z Mao, N Adams, GE Karniadakis - Journal of Computational …, 2022 - Elsevier
Accurate solutions to inverse supersonic compressible flow problems are often required for
designing specialized aerospace vehicles. In particular, we consider the problem where we …

Machine learning in aerodynamic shape optimization

J Li, X Du, JRRA Martins - Progress in Aerospace Sciences, 2022 - Elsevier
Abstract Machine learning (ML) has been increasingly used to aid aerodynamic shape
optimization (ASO), thanks to the availability of aerodynamic data and continued …

[HTML][HTML] A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations

L Yuan, YQ Ni, XY Deng, S Hao - Journal of Computational Physics, 2022 - Elsevier
Physics informed neural networks (PINNs) are a novel deep learning paradigm primed for
solving forward and inverse problems of nonlinear partial differential equations (PDEs). By …

Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

AD Jagtap, E Kharazmi, GE Karniadakis - Computer Methods in Applied …, 2020 - Elsevier
We propose a conservative physics-informed neural network (cPINN) on discrete domains
for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub …