A review on deep learning MRI reconstruction without fully sampled k-space

G Zeng, Y Guo, J Zhan, Z Wang, Z Lai, X Du, X Qu… - BMC Medical …, 2021 - Springer
Background Magnetic resonance imaging (MRI) is an effective auxiliary diagnostic method
in clinical medicine, but it has always suffered from the problem of long acquisition time …

Compressed sensing MRI: a review of the clinical literature

ON Jaspan, R Fleysher, ML Lipton - The British journal of …, 2015 - academic.oup.com
MRI is one of the most dynamic and safe imaging techniques available in the clinic today.
However, MRI acquisitions tend to be slow, limiting patient throughput and limiting potential …

Unsupervised MRI reconstruction via zero-shot learned adversarial transformers

Y Korkmaz, SUH Dar, M Yurt, M Özbey… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Supervised reconstruction models are characteristically trained on matched pairs of
undersampled and fully-sampled data to capture an MRI prior, along with supervision …

Image reconstruction by domain-transform manifold learning

B Zhu, JZ Liu, SF Cauley, BR Rosen, MS Rosen - Nature, 2018 - nature.com
Image reconstruction is essential for imaging applications across the physical and life
sciences, including optical and radar systems, magnetic resonance imaging, X-ray …

Learning a variational network for reconstruction of accelerated MRI data

K Hammernik, T Klatzer, E Kobler… - Magnetic resonance …, 2018 - Wiley Online Library
Purpose To allow fast and high‐quality reconstruction of clinical accelerated multi‐coil MR
data by learning a variational network that combines the mathematical structure of …

Self‐supervised learning of physics‐guided reconstruction neural networks without fully sampled reference data

B Yaman, SAH Hosseini, S Moeller… - Magnetic resonance …, 2020 - Wiley Online Library
Purpose To develop a strategy for training a physics‐guided MRI reconstruction neural
network without a database of fully sampled data sets. Methods Self‐supervised learning via …

Clinical impact of deep learning reconstruction in MRI

S Kiryu, H Akai, K Yasaka, T Tajima, A Kunimatsu… - Radiographics, 2023 - pubs.rsna.org
Deep learning has been recognized as a paradigm-shifting tool in radiology. Deep learning
reconstruction (DLR) has recently emerged as a technology used in the image …

Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches, trends, and issues

F Knoll, K Hammernik, C Zhang… - IEEE signal …, 2020 - ieeexplore.ieee.org
Following the success of deep learning in a wide range of applications, neural network-
based machine-learning techniques have received interest as a means of accelerating …

Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: database‐free deep learning for fast imaging

M Akçakaya, S Moeller, S Weingärtner… - Magnetic resonance …, 2019 - Wiley Online Library
Purpose To develop an improved k‐space reconstruction method using scan‐specific deep
learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural …

Accelerating magnetic resonance imaging via deep learning

S Wang, Z Su, L Ying, X Peng, S Zhu… - 2016 IEEE 13th …, 2016 - ieeexplore.ieee.org
This paper proposes a deep learning approach for accelerating magnetic resonance
imaging (MRI) using a large number of existing high quality MR images as the training …