Artificial intelligence to deep learning: machine intelligence approach for drug discovery
Drug designing and development is an important area of research for pharmaceutical
companies and chemical scientists. However, low efficacy, off-target delivery, time …
companies and chemical scientists. However, low efficacy, off-target delivery, time …
Drug discovery with explainable artificial intelligence
Deep learning bears promise for drug discovery, including advanced image analysis,
prediction of molecular structure and function, and automated generation of innovative …
prediction of molecular structure and function, and automated generation of innovative …
Explaining deep neural networks and beyond: A review of methods and applications
With the broader and highly successful usage of machine learning (ML) in industry and the
sciences, there has been a growing demand for explainable artificial intelligence (XAI) …
sciences, there has been a growing demand for explainable artificial intelligence (XAI) …
Towards explainable artificial intelligence
In recent years, machine learning (ML) has become a key enabling technology for the
sciences and industry. Especially through improvements in methodology, the availability of …
sciences and industry. Especially through improvements in methodology, the availability of …
Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation
The discovery of novel materials and functional molecules can help to solve some of
society's most urgent challenges, ranging from efficient energy harvesting and storage to …
society's most urgent challenges, ranging from efficient energy harvesting and storage to …
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
Toward explainable artificial intelligence for precision pathology
The rapid development of precision medicine in recent years has started to challenge
diagnostic pathology with respect to its ability to analyze histological images and …
diagnostic pathology with respect to its ability to analyze histological images and …
Artificial intelligence in drug discovery: recent advances and future perspectives
Introduction: Artificial intelligence (AI) has inspired computer-aided drug discovery. The
widespread adoption of machine learning, in particular deep learning, in multiple scientific …
widespread adoption of machine learning, in particular deep learning, in multiple scientific …
[HTML][HTML] Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats
Chemical engineers rely on models for design, research, and daily decision-making, often
with potentially large financial and safety implications. Previous efforts a few decades ago to …
with potentially large financial and safety implications. Previous efforts a few decades ago to …