Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Efficient hardware architectures for accelerating deep neural networks: Survey
In the modern-day era of technology, a paradigm shift has been witnessed in the areas
involving applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep …
involving applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep …
[HTML][HTML] An updated survey of efficient hardware architectures for accelerating deep convolutional neural networks
Deep Neural Networks (DNNs) are nowadays a common practice in most of the Artificial
Intelligence (AI) applications. Their ability to go beyond human precision has made these …
Intelligence (AI) applications. Their ability to go beyond human precision has made these …
Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks
The growing energy and performance costs of deep learning have driven the community to
reduce the size of neural networks by selectively pruning components. Similarly to their …
reduce the size of neural networks by selectively pruning components. Similarly to their …
Olive: Accelerating large language models via hardware-friendly outlier-victim pair quantization
Transformer-based large language models (LLMs) have achieved great success with the
growing model size. LLMs' size grows by 240× every two years, which outpaces the …
growing model size. LLMs' size grows by 240× every two years, which outpaces the …
Spatten: Efficient sparse attention architecture with cascade token and head pruning
The attention mechanism is becoming increasingly popular in Natural Language Processing
(NLP) applications, showing superior performance than convolutional and recurrent …
(NLP) applications, showing superior performance than convolutional and recurrent …
Enable deep learning on mobile devices: Methods, systems, and applications
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial
intelligence (AI), including computer vision, natural language processing, and speech …
intelligence (AI), including computer vision, natural language processing, and speech …
Hardware and software optimizations for accelerating deep neural networks: Survey of current trends, challenges, and the road ahead
Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning
(DL) is already present in many applications ranging from computer vision for medicine to …
(DL) is already present in many applications ranging from computer vision for medicine to …
AWB-GCN: A graph convolutional network accelerator with runtime workload rebalancing
Deep learning systems have been successfully applied to Euclidean data such as images,
video, and audio. In many applications, however, information and their relationships are …
video, and audio. In many applications, however, information and their relationships are …
Gemmini: Enabling systematic deep-learning architecture evaluation via full-stack integration
DNN accelerators are often developed and evaluated in isolation without considering the
cross-stack, system-level effects in real-world environments. This makes it difficult to …
cross-stack, system-level effects in real-world environments. This makes it difficult to …
I-GCN: A graph convolutional network accelerator with runtime locality enhancement through islandization
Graph Convolutional Networks (GCNs) have drawn tremendous attention in the past three
years. Compared with other deep learning modalities, high-performance hardware …
years. Compared with other deep learning modalities, high-performance hardware …