Machine learning in medical applications: A review of state-of-the-art methods

M Shehab, L Abualigah, Q Shambour… - Computers in Biology …, 2022 - Elsevier
Applications of machine learning (ML) methods have been used extensively to solve various
complex challenges in recent years in various application areas, such as medical, financial …

Machine learning force fields

OT Unke, S Chmiela, HE Sauceda… - Chemical …, 2021 - ACS Publications
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …

Towards explainable artificial intelligence

W Samek, KR Müller - … AI: interpreting, explaining and visualizing deep …, 2019 - Springer
In recent years, machine learning (ML) has become a key enabling technology for the
sciences and industry. Especially through improvements in methodology, the availability of …

Deep learning in mining biological data

M Mahmud, MS Kaiser, TM McGinnity, A Hussain - Cognitive computation, 2021 - Springer
Recent technological advancements in data acquisition tools allowed life scientists to
acquire multimodal data from different biological application domains. Categorized in three …

eD octor: machine learning and the future of medicine

GS Handelman, HK Kok, RV Chandra… - Journal of internal …, 2018 - Wiley Online Library
Abstract Machine learning (ML) is a burgeoning field of medicine with huge resources being
applied to fuse computer science and statistics to medical problems. Proponents of ML extol …

[HTML][HTML] Methods for interpreting and understanding deep neural networks

G Montavon, W Samek, KR Müller - Digital signal processing, 2018 - Elsevier
This paper provides an entry point to the problem of interpreting a deep neural network
model and explaining its predictions. It is based on a tutorial given at ICASSP 2017. As a …

Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning

M Lee, LRD Sanz, A Barra, A Wolff… - Nature …, 2022 - nature.com
Consciousness can be defined by two components: arousal (wakefulness) and awareness
(subjective experience). However, neurophysiological consciousness metrics able to …

Machine learning applications in epilepsy

B Abbasi, DM Goldenholz - Epilepsia, 2019 - Wiley Online Library
Abstract Machine learning leverages statistical and computer science principles to develop
algorithms capable of improving performance through interpretation of data rather than …

A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages

S Rathore, M Habes, MA Iftikhar, A Shacklett… - NeuroImage, 2017 - Elsevier
Neuroimaging has made it possible to measure pathological brain changes associated with
Alzheimer's disease (AD) in vivo. Over the past decade, these measures have been …

Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls

MR Arbabshirani, S Plis, J Sui, VD Calhoun - Neuroimage, 2017 - Elsevier
Neuroimaging-based single subject prediction of brain disorders has gained increasing
attention in recent years. Using a variety of neuroimaging modalities such as structural …