Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges

N Rodríguez-Barroso, D Jiménez-López, MV Luzón… - Information …, 2023 - Elsevier
Federated learning is a machine learning paradigm that emerges as a solution to the privacy-
preservation demands in artificial intelligence. As machine learning, federated learning is …

Robust aggregation for federated learning

K Pillutla, SM Kakade… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
We present a novel approach to federated learning that endows its aggregation process with
greater robustness to potential poisoning of local data or model parameters of participating …

Federated learning of gboard language models with differential privacy

Z Xu, Y Zhang, G Andrew, CA Choquette-Choo… - arxiv preprint arxiv …, 2023 - arxiv.org
We train language models (LMs) with federated learning (FL) and differential privacy (DP) in
the Google Keyboard (Gboard). We apply the DP-Follow-the-Regularized-Leader (DP …

The skellam mechanism for differentially private federated learning

N Agarwal, P Kairouz, Z Liu - Advances in Neural …, 2021 - proceedings.neurips.cc
We introduce the multi-dimensional Skellam mechanism, a discrete differential privacy
mechanism based on the difference of two independent Poisson random variables. To …

The discrete gaussian for differential privacy

CL Canonne, G Kamath… - Advances in Neural …, 2020 - proceedings.neurips.cc
A key tool for building differentially private systems is adding Gaussian noise to the output of
a function evaluated on a sensitive dataset. Unfortunately, using a continuous distribution …

Privacy-preserving aggregation in federated learning: A survey

Z Liu, J Guo, W Yang, J Fan, KY Lam… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Over the recent years, with the increasing adoption of Federated Learning (FL) algorithms
and growing concerns over personal data privacy, Privacy-Preserving Federated Learning …

Make landscape flatter in differentially private federated learning

Y Shi, Y Liu, K Wei, L Shen… - Proceedings of the …, 2023 - openaccess.thecvf.com
To defend the inference attacks and mitigate the sensitive information leakages in Federated
Learning (FL), client-level Differentially Private FL (DPFL) is the de-facto standard for privacy …