Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges

Y Xu, S Kohtz, J Boakye, P Gardoni, P Wang - Reliability Engineering & …, 2023 - Elsevier
The computerized simulations of physical and socio-economic systems have proliferated in
the past decade, at the same time, the capability to develop high-fidelity system predictive …

Applications of physics-informed neural networks in power systems-a review

B Huang, J Wang - IEEE Transactions on Power Systems, 2022 - ieeexplore.ieee.org
The advances of deep learning (DL) techniques bring new opportunities to numerous
intractable tasks in power systems (PSs). Nevertheless, the extension of the application of …

Prospects and challenges of the machine learning and data-driven methods for the predictive analysis of power systems: A review

W Strielkowski, A Vlasov, K Selivanov, K Muraviev… - Energies, 2023 - mdpi.com
The use of machine learning and data-driven methods for predictive analysis of power
systems offers the potential to accurately predict and manage the behavior of these systems …

A survey of power system state estimation using multiple data sources: PMUs, SCADA, AMI, and beyond

G Cheng, Y Lin, A Abur… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
State estimation (SE) is indispensable for the situational awareness of power systems.
Conventional SE is fed by measurements collected from the supervisory control and data …

Artificial intelligence-based methods for renewable power system operation

Y Li, Y Ding, S He, F Hu, J Duan, G Wen… - Nature Reviews …, 2024 - nature.com
Carbon neutrality goals are driving the increased use of renewable energy (RE). Large-
scale use of RE requires accurate energy generation forecasts; optimized power dispatch …

Physics-informed machine learning and its structural integrity applications: state of the art

SP Zhu, L Wang, C Luo… - … of the Royal …, 2023 - royalsocietypublishing.org
The development of machine learning (ML) provides a promising solution to guarantee the
structural integrity of critical components during service period. However, considering the …

Real-time power system state estimation and forecasting via deep unrolled neural networks

L Zhang, G Wang, GB Giannakis - IEEE Transactions on Signal …, 2019 - ieeexplore.ieee.org
Contemporary power grids are being challenged by rapid and sizeable voltage fluctuations
that are caused by large-scale deployment of renewable generators, electric vehicles, and …

Learning optimal solutions for extremely fast AC optimal power flow

AS Zamzam, K Baker - 2020 IEEE International Conference on …, 2020 - ieeexplore.ieee.org
We develop, in this paper, a machine learning approach to optimize the real-time operation
of electric power grids. In particular, we learn feasible solutions to the AC optimal power flow …

Physics-informed graphical neural network for power system state estimation

QH Ngo, BLH Nguyen, TV Vu, J Zhang, T Ngo - Applied Energy, 2024 - Elsevier
State estimation is highly critical for accurately observing the dynamic behavior of the power
grids and minimizing risks from cyber threats. However, existing state estimation methods …

Physics-informed machine learning in prognostics and health management: State of the art and challenges

D Weikun, KTP Nguyen, K Medjaher, G Christian… - Applied Mathematical …, 2023 - Elsevier
Prognostics and health management (PHM) plays a constructive role in the equipment's
entire life health service. It has long benefited from intensive research into physics modeling …