Machine learning for reliability engineering and safety applications: Review of current status and future opportunities

Z Xu, JH Saleh - Reliability Engineering & System Safety, 2021 - Elsevier
Abstract Machine learning (ML) pervades an increasing number of academic disciplines and
industries. Its impact is profound, and several fields have been fundamentally altered by it …

A review on semi-supervised clustering

J Cai, J Hao, H Yang, X Zhao, Y Yang - Information Sciences, 2023 - Elsevier
Abstract Semi-supervised clustering (SSC), a technique integrating semi-supervised
learning and clustering analysis, incorporates the given prior information (eg, class labels …

A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications

L Alzubaidi, J Bai, A Al-Sabaawi, J Santamaría… - Journal of Big Data, 2023 - Springer
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …

Safe deep semi-supervised learning for unseen-class unlabeled data

LZ Guo, ZY Zhang, Y Jiang, YF Li… - … on machine learning, 2020 - proceedings.mlr.press
Deep semi-supervised learning (SSL) has been recently shown very effectively. However, its
performance is seriously decreased when the class distribution is mismatched, among …

Survey of deep representation learning for speech emotion recognition

S Latif, R Rana, S Khalifa, R Jurdak… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
Traditionally, speech emotion recognition (SER) research has relied on manually
handcrafted acoustic features using feature engineering. However, the design of …

Provably consistent partial-label learning

L Feng, J Lv, B Han, M Xu, G Niu… - Advances in neural …, 2020 - proceedings.neurips.cc
Partial-label learning (PLL) is a multi-class classification problem, where each training
example is associated with a set of candidate labels. Even though many practical PLL …

Safe-student for safe deep semi-supervised learning with unseen-class unlabeled data

R He, Z Han, X Lu, Y Yin - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
Deep semi-supervised learning (SSL) methods aim to take advantage of abundant
unlabeled data to improve the algorithm performance. In this paper, we consider the …

[HTML][HTML] Semi-supervised learning for industrial fault detection and diagnosis: A systemic review

JM Ramírez-Sanz, JA Maestro-Prieto… - ISA transactions, 2023 - Elsevier
Abstract The automation of Fault Detection and Diagnosis (FDD) is a central task for many
industries today. A myriad of methods are in use, although the most recent leading …

Synthesis optimization and adsorption modeling of biochar for pollutant removal via machine learning

W Zhang, R Chen, J Li, T Huang, B Wu, J Ma, Q Wen… - Biochar, 2023 - Springer
Due to large specific surface area, abundant functional groups and low cost, biochar is
widely used for pollutant removal. The adsorption performance of biochar is related to …

Towards safe weakly supervised learning

YF Li, LZ Guo, ZH Zhou - IEEE transactions on pattern analysis …, 2019 - ieeexplore.ieee.org
In this paper, we study weakly supervised learning where a large amount of data
supervision is not accessible. This includes i) incomplete supervision, where only a small …