Advances in adversarial attacks and defenses in computer vision: A survey

N Akhtar, A Mian, N Kardan, M Shah - IEEE Access, 2021 - ieeexplore.ieee.org
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …

Normalization techniques in training dnns: Methodology, analysis and application

L Huang, J Qin, Y Zhou, F Zhu, L Liu… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
Normalization techniques are essential for accelerating the training and improving the
generalization of deep neural networks (DNNs), and have successfully been used in various …

idisc: Internal discretization for monocular depth estimation

L Piccinelli, C Sakaridis, F Yu - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Monocular depth estimation is fundamental for 3D scene understanding and downstream
applications. However, even under the supervised setup, it is still challenging and ill-posed …

Graph contrastive learning automated

Y You, T Chen, Y Shen, Z Wang - … Conference on Machine …, 2021 - proceedings.mlr.press
Self-supervised learning on graph-structured data has drawn recent interest for learning
generalizable, transferable and robust representations from unlabeled graphs. Among …

Going deeper with image transformers

H Touvron, M Cord, A Sablayrolles… - Proceedings of the …, 2021 - openaccess.thecvf.com
Transformers have been recently adapted for large scale image classification, achieving
high scores shaking up the long supremacy of convolutional neural networks. However the …

Omnivore: A single model for many visual modalities

R Girdhar, M Singh, N Ravi… - Proceedings of the …, 2022 - openaccess.thecvf.com
Prior work has studied different visual modalities in isolation and developed separate
architectures for recognition of images, videos, and 3D data. Instead, in this paper, we …

Robustbench: a standardized adversarial robustness benchmark

F Croce, M Andriushchenko, V Sehwag… - arxiv preprint arxiv …, 2020 - arxiv.org
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …

Volo: Vision outlooker for visual recognition

L Yuan, Q Hou, Z Jiang, J Feng… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Recently, Vision Transformers (ViTs) have been broadly explored in visual recognition. With
low efficiency in encoding fine-level features, the performance of ViTs is still inferior to the …

Conv2former: A simple transformer-style convnet for visual recognition

Q Hou, CZ Lu, MM Cheng… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Vision Transformers have been the most popular network architecture in visual recognition
recently due to the strong ability of encode global information. However, its high …

Large-scale adversarial training for vision-and-language representation learning

Z Gan, YC Chen, L Li, C Zhu… - Advances in Neural …, 2020 - proceedings.neurips.cc
We present VILLA, the first known effort on large-scale adversarial training for vision-and-
language (V+ L) representation learning. VILLA consists of two training stages:(i) task …